实习内容
一、实习的安全与纪律
1、电力生产企业在安全上遵循的原则:
安全第一、预防为主。安全是电力生产企业永恒的主题。
2、实习安全
实习安全二个主要方面:
1)人身安全
a)进入生产现场必须戴安全帽;
b)进入生产现场必须与导电体保持足够的安全距离;
对于不同电压等级的电气设备(带电体),在设备不停电的情况下,安全距离如表1-1所示:
有电压、部分带有电压或一经操作即带有电压的设备);对机械旋转部位、运动部位也必须保持足够的安全距离。
2)设备安全。要保证设备安全,对实习人员必须做到:
a)在生产现场,严禁任何人动任何设备;
b)生产现场严禁吸烟、携带火种;
c)任何人不得进入厂房或生产现场的“警戒区”;
d)遇有检修试验或设备操作等情况,实习人员必须绕道而行;
e)生产场所严禁照相、录音与录影;
f)严禁实习人员将包、袋及照相、录影设备、器材等带入厂房内;g)禁止实习人员动用生产场所的电话机。
对实习人员着装的要求:
3、实习纪律
1)所有实习人员必须遵守实习接待单位的有关各项纪律与规章制度,服从接待方的管理;
2)进出生产现场应佩带实习证或出示其它有效实习证件,自觉接受保卫人员的检查;
3)在无接待单位接待实习人员带领、监护情况下,任何实习人员均不得进入生产现场;
4)现场参观、实习过程中,任何实习人员均不得脱离自己所在的编队。
二、葛洲坝水利枢纽工程简介
葛洲坝水利枢纽工程主要数据如下表2-1:
其中水库回水距离就是改善通航条件的里程,由此带来的效益,即为通航效益。大坝简图如图2-1。
图2-1葛洲坝大坝简图
保证出力:76.8万kW;
水库调节性能:日调节(泾流式电站);
泄水闸最大排洪能力:8.4万立方米/秒;
全部工程总体最大排洪能力:11.2万立方米/秒;
全部工程动工时间:1970.12.30
第一台机组(1F)投产试运行:1981.7.31
全部机组投产:1988.12
全部工程动工时间:1970.12.30
第一台机组(1F)投产试运行:1981.7.31
全部机组投产:1988.12
全部工程通过国家验收:1991.11
三、装机容量
电厂220kV开关站(变电站)接线方式:双母线带旁路;电厂发电机与主变压器配接方式:单元接线方式;
电厂500kV开关站(变电站)接线方式:3/2接线;
电厂发电机与主变压器配接方式:扩大单元接线方式;厂用电高压电压等级:6kV;
厂用电低压电压等级:400V;(380/220V)
工程总投资:48.48亿元(折合到70年代末的物价指数)。
四、电厂电气一次部分
1、220kV开关站的接线方式为:
1)、双母线带旁路,旁路母线分段。
将旁路母线分段并在每个分段上各设置一台断路器的原因是母线上的进、出线回数多,且均是重要电源或重要线路,有可能出现有其中两台断路器需要同时检修而对应的进、出线不能停电的情况,在这种情况发生时旁路母线分段运行、旁路断路器分别代替所要检修的两台断路器工作,保证了发供电的可靠性。同时两台旁路断路器也不可能总是处于完好状态,也需要检修与维护,当其中一台检一台处于备用状态,这样可靠性比旁路母线不分段、仅设置一台旁路断路器高。
2)、开关站的主要配置:
出线8回:1-8E(其中7E备用);
进线7回:1-7FB(FB:发电机-变压器组);
大江、二江开关站联络变压器联络线:2回;
断路器:19台;
3)、母线:圆形管状空心铝合金硬母线,主母线分别设置电压互感器(CVT)及避雷器(ZnO)一组。
4)、开关站布置型式:
分相中型单列布置(户外式)。
发电机与主变压器连接方式:
采用单元接线方式。
5)、DL型号及参数:
型号:ELSFP4-1(单断口)
额定工作电流:Ie=400A
额定开断电流:Iedk-50(60)KA
动稳定电流:125KA
热稳定电流:50KA(4S)
固有动作时间<30mS
燃弧时间:<25mS
全分闸时间:<50mS
切断负荷工作电流次数:>5000次
切断短路电流次数:>30次
合闸时间:<60mS
6)、发电机与主变压器连接方式、机组及主变压器型号与参数
a、发电机与主变压器连接方式:采用单元接线方式。
b、机组及主变压器型号与参数:
c、主变压器型号及参数
2采用分支接线方式(仅3-6F有此分支)。分支接线是机组与主变压器采用单元接线或扩大单元接线方式下获得厂用电的一种常用方法。在有厂用分支的情况下,为保证对厂用分支供电可靠性,必须作到:1)发电机出口母线上设置隔离开关;2)隔离开关安装位置应正确。为提高对厂用分支供电的可靠性,在3F-6F出口母线上加装了出口断路器。这样当机组故障时出口断路器跳闸切除故障,主变压器高压断路器不再分闸,不会出现机组故障对应6kV分段短时停电情况。
厂用6kV系统的接线方式:
采用单母线分段方式—电厂厂用6kV母线共4段,各段编号分别为3、4、5、6,与各自供电变压器(公用变压器)所连接的发电机编号对应。
厂用电有关配置:
对发电厂来讲,厂用电就是“生命线”,必须具有足够高的可靠性。但单母线分段接线方式可靠性不高,为解决这一矛盾,普遍采用的配置原则是:
1、电源配置原则:各分段的电源必须相互,且获得电源方向不得单一。
2、负荷配置原则:同名负荷的双回路或多回路须连接于母线不同分段上。
3、段间配置原则:分段与分段间应具备相互备用功能或设置专门备用段。(电厂为相互备用)
五、电厂电气一次部分
1.500kV开关站接线方式有关设备配置
(1)接线方式:采用3/2接线(见图5-1)。
选择3/2接线方式,是基于开关站重要性考虑的。因为开关站进出线回数多,且均是重要电源与重要负荷,电压等级高、输送容量大、距离远,母线穿越功率大(最大2820MVA),并通过葛洲坝500kV换流站与电网并网,既是电厂电力外送的咽喉,又是电网重要枢纽变电站。
图5-1电厂电气主接线图
2)布置型式:分相中型三列布置(户外式)。
3)开关站有关配置:开关站共6串,每串均作交叉配置。(交叉配置:一串的2回线路中,一回是电源或进线,例一回是负荷或出线。)
交叉配置是3/2接线方式普遍的配置原则,作交叉配置时,3/2接线可靠性达到最高。因为这种配置在一条母线检一条母线故障或2条母线同时故障时电源与系统仍然相连接,(在系统处于稳定条件下)仍能够正常工作。
1-6串的出线分别是:葛凤XX、葛双1回、葛双2回、葛岗线、葛换2回、葛换1回。其中葛凤XX、葛双2回、葛岗线首端分别装设并联电抗器(DK)。因为这三回出线电气距离长、线路等效电感及电容量大,“电容效应”的影响严重,装设并联电抗器后,可以有效防止过电压的产生(过电压现象最严重的情况是线路空载)、适当地改善线路无功功率的分布、从而使系统潮流分布的合理性与经济性得到相应的改善。
自耦变压器的中性点必须直接接地,这是由其工作原理及内部电路结构特殊性所决定的,因此251B、252B的中性点为直接接地方式。
若自耦变压器的中性点不接地或不直接接地,在高压侧发生单相接地情况下,中性点位移,与此有自耦关系的中压或低压绕组对地电压将升高到相当高的程度,足以导致绝缘击穿、变压器损坏,并由此引起电力系统故障。中性点直接接地后,高压侧单相接地时造成单相短路故障,中性点不发生位移,继电保护装置动作切除故障或变压器本身,保证变压器绝缘不被损坏。
2.发电机与主变压器的连接方式,有关设备的型号参数
(1)连接方式
采用扩大单元接线方式(见图5-1)。
由于主变压器连接2台发电机,且1-3串进线由二台主变压器并联,所以在发电机出口母线上设置了断路器。这样当一台发电机故障时,仅切除故障发电机,本串上其他发电机仍能正常工作,最大限度保证了对系统供电的可靠性。
(2)有关设备的型号参数
表5-1主变压器(国产)型号与参数
(1)设置制动电阻的原因
电厂外送有功功率很大,当系统故障或出线跳闸时,原动机(水轮机)的输入功率由于惯性作用不可能迅速减小,此时发电机发出功率总和大于线路输出功率总和,机组转子的制动力矩小于拖动力矩,转子在原有旋转速度基础上加速,从而导致机组与系统不同步,造成振荡或失步,机组被迫解列,甚至引起整个系统瓦解。设置制动电阻后,制动电阻在上述情况下通过继电保护或自动装置自动投入。制动电阻作为负载吸收故障时有功功率的“多余”部分,因而对转子加速起制动作用,保证机组与系统正常运行。
(2)制动电阻投入的时间:2S。
六、三峡大坝参观
三峡工程位于长江西陵峡中XX,坝址在湖北省宜昌市XX。整个工程由一座混凝重力式大坝、泄水闸、一座堤后式水电站、一座永久性通航船闸和一架升船机组成。设计正常蓄水位l75米,总库容393亿立方米,防洪库容221.5亿立方米。大坝坝顶总长为3035米,坝高185米,总装机容量为1820千瓦时,年发电量847亿千瓦时。
三峡工程设计总工期l7年,其中施工准备及第一期工程施工5年,二期工程施工6年,三期工程施工6年。第一期围右岸,在一期土石围堰保护下开挖导流明渠,修建混凝土纵向围堰,同时在左岸修建临时船闸,并开始施工永久船闸
及升船机挡水部位的土建工程。长江水流仍从主河床宣泄,照常通航。第二期围左岸,截断主河床,修建二期上下游土石围堰与混凝土纵向围堰形成。二期基坑,施工大坝泄洪坝段、左岸厂磨坝段及电站厂房。继续施工升船机挡水部位(上闸首),并完建永久船闸。江水从明渠宣泄,船舶从明渠及左岸临时船闸通行。第三期封堵明渠,修筑土石围堰及碾压混凝土围堰,在三期基坑内施工右岸厂房坝段及电站厂房、碾压混凝土围堰和混凝土纵向围堰及其以左大坝挡水、左岸电站发电。江水从泄洪坝段、导流底孔及深孔宣泄,船舶从永久船闸通行。
三峡工程建成后,荆江河段两岸地区的防洪标准将由目前的不足10年一遇提高到百年一遇,并为洞庭湖区的根本治理创造条件;为经济发达、能源不足的华中、华东XX提供可靠廉价的电能,每年约替代原煤4000万~5000万吨;显著改善长江宜昌至重庆660千米的航道,万吨级船队可直通重庆,航道单向年通过能力可由目前的约l000万吨提高到5000万吨,运输成本可降到35%~37%,同时,因三峡水库的调节,将大大改善长江中下游枯水李节肮运条件。另外,有利于促进水库渔业、旅游业的发展,也有利于南水北调工程的实施。