测品娱乐
您的当前位置:首页抑制谐波方案

抑制谐波方案

来源:测品娱乐
地铁BAS——抑制谐波方案

地铁BAS——抑制谐波方案

4.谐波干扰

4。1有关谐波干扰的问题

BAS系统设备是否对电网有谐波干扰?如何解决?

4.2有关谐波干扰问题的答复

地铁BAS系统对电网有谐波干扰,解决方案如下论述:

4。2。1谐波的产生

电网谐波来自于3个方面:一是发电源质量不高产生谐波;二是输配电系统产生谐波;三是用电设备产生的谐波。其中用电设备产生的谐波最多。

发电机由于三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀一致和其他一些原因,发电源多少也会产生一些谐波,但一般来说很少。输配电系统中主要是电力变压器产生谐波,由于变压器铁心的饱和,磁化曲线的非线性,加上设计变压器时考虑经济性,其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,因而含有奇次谐波。它的大小与磁路的结构形式、铁心的饱和程度有关。铁心的饱和程度越高,变压器工作点偏离线性越远,谐波电流也就越大,其中3次谐波电流可达额定电流的0.5%。

在用电设备中,下面一些设备都能产生谐波。

晶闸管整流设备.由于晶闸管整流在电力机车、铝电解槽、充电装置、开关电源等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。我们知道,晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,显然在留下部分中含有大量的谐波.如果整流装置为单相整流电路,在接感性负载时则含有奇次谐波电流,其中3次谐波的含量可达基波的30%;接容性负载时则含有奇次谐波电压,其谐波含量随电容值的增大而增大。如果整流装置为三相全控桥6脉整流器,变压器原边及供电线路含有5次及以上奇次谐波电流;如果是12脉冲整流器,也还有11次及以上奇次谐波电流。经统计表明:由整流装置产生的谐波占所有谐波的近40%,这是最大的谐波源。

变频装置。变频装置常用于风机、水泵、电梯等设备中,由于采用了相位控制,谐波成份很复杂,除含有整数次谐波外,还含有分数次谐波,这类装置的功率一般较大,随着变频调速的发展,对电网造成的谐波也越来越多。

电弧炉、电石炉。由于加热原料时电炉的三相电极很难同时接触到高低不平的炉料,使得燃烧不稳定,引起三相负荷不平衡,产生谐波电流,经变压器的三角形连接线圈而注入电网。其中主要是2 7次的谐波,平均可达基波的8% 20%,最大可达45%。

气体放电类电光源。荧光灯、高压汞灯、高压钠灯与金属卤化物灯等属于气体放电类电光源。分析与测量这类电光源的伏安特性,可知其非线性十分严重,有的还含有负的伏安特性,它们会给电网造成奇次谐波电流。

第1页 共26页

地铁BAS——抑制谐波方案

家用电器。电视机、录像机、计算机、调光灯具、调温炊具等,因具有调压整流装置,会产生较深的奇次谐波。在洗衣机、电风扇、空调器等有绕组的设备中,因不平衡电流的变化也能使波形改变.这些家用电器虽然功率较小,但数量巨大,也是谐波的主要来源之一。

4。2。2谐波的危害

电网谐波造成电网污染,正弦电压波形畸变,使电力系统的发供用电设备出现许多异常现象和故障,情况日趋严重。

电力系统中谐波的危害是多方面的,概括起来有以下几个方面: 1。 对供配电线路的危害 1影响线路的稳定运行 ○

供配电系统中的电力线路与电力变压器一般采用电磁式继电器、感应式继电器或晶体管继电器予以检测保护,使得在故障情况下保证线路与设备的安全。但由于电磁式继电器与感应式继电器对10%以下含量高达40%时又导致继电保护误动作,因而在谐波影响下不能全面有效地起到保护作用。晶体管继电器虽然具有许多优点,但由于采用了整流取样电路,容易受谐波影响,产生误动或拒动。这样,谐波将严重威胁供配电系统的稳定与安全运行。 错误!影响电网的质量

电力系统中的谐波能使电网的电压与电流波形发生畸变。如民用配电系统中的中性线,由于荧光灯、调光灯、计算机等负载,会产生大量的奇次谐波,其中3次谐波的含量较多,可达40%;三相配电线路中,相线上的3的整数倍谐波在中性线上会叠加,使中性线的电流值可能超过相线上的电流。另外,相同频率的谐波电压与谐波电流要产生同次谐波的有功功率与无功功率,从而降低电网电压,浪费电网的容量. 2。 对电力设备的危害 错误!对电力电容器的危害

当电网存在谐波时,投入电容器后其端电压增大,通过电容器的电流增加得更大,使电容器损耗功率增加。对于膜纸复合介质电容器,虽然允许有谐波时的损耗功率为无谐波时损耗功率的1.38倍;对于全膜电容器允许有谐波时的损耗功率为无谐波时的1.43倍,但如果谐波含量较高,超出电容器允许条件,就会使电容器过电流和过负荷,损耗功率超过上述值,使电容器异常发热,在电场和温度的作用下绝缘介质会加速老化。尤其是电容器投入在电压已经畸变的电网中时,还可能使电网的谐波加剧,即产生谐波扩大现象。另外,谐波的存在往往使电压呈现尖顶波形,尖顶电压波易在介质中诱发局部放电,且由于电压变化率大,局部放电强度大,对绝缘介质更能起到加速老化的作用,从而缩短电容器的使用寿命.一般来说,电压每升高10%,电容器的寿命就要缩短1/2左右。再者,在谐波严重的情况下,还会使电容器鼓肚、击穿或爆炸. 错误!对电力变压器的危害

谐波使变压器的铜耗增大,其中包括电阻损耗、导体中的涡流损耗与导体外部因漏磁通引起的杂散损耗都要增加.谐波还使变压器的铁耗增大,这主要表现在铁心中的磁滞损耗增加,谐波使电压的波形变得越差,则磁滞损耗越大。同时由于以上两方面的损耗增加,因此要减少变压器的实际使用容量,或者说在选择变压器额定容量时需要考虑留出电网中的谐波含量。除此之外,谐波还导致变压器噪声增大,变压器的振动噪声主要是由于铁心的磁致伸缩引起的,随着谐波次数的增加,振动频率在1KHZ左右的成分使混杂噪声增加,有时还发出金属声。

错误!对电力电缆的危害

由于谐波次数高频率上升,再加之电缆导体截面积越大趋肤效应越明显,从而导致导体的交流电阻增大,使得电缆的允许通过电流减小。另外,电缆的电阻、系统母线侧及线路感抗与系统串联,提高功率因数用的电容器及线路的容抗与系统并联,在一定数值的电感与电容下可能发生谐振。

第2页 共26页

地铁BAS——抑制谐波方案

3.对用电设备的危害 错误!对电动机的危害

谐波对异步电动机的影响,主要是增加电动机的附加损耗,降低效率,严重时使电动机过热。尤其是负序谐波在电动机中产生负序旋转磁场,形成与电动机旋转方向相反的转矩,起制动作用,从而减少电动机的出力.另外电动机中的谐波电流,当频率接近某零件的固有频率时还会使电动机产生机械振动,发出很大的噪声. 错误!对低压开关设备的危害

对于配电用断路器来说,全电磁型的断路器易受谐波电流的影响使铁耗增大而发热,同时由于对电磁铁的影响与涡流影响使脱扣困难,且谐波次数越高影响越大;热磁型的断路器,由于导体的集肤次应与铁耗增加而引起发热,使得额定电流降低与脱扣电流降低;电子型的断路器,谐波也要使其额定电流降低,尤其是检测峰值的电子断路器,额定电流降低得更多。由此可知,上述三种配电断路器都可能因谐波产生误动作。

对于漏电断路器来说,由于谐波汇漏电流的作用,可能使断路器异常发热,出现误动作或不动作。对于电磁接角器来说,谐波电流使磁体部件温升增大,影响接点,线圈温度升高使额定电流降低。对于热继电器来说,因受谐波电流的影响也要使额定电流降低。在工作中它们都有可能造成误动作。 错误!对弱电系统设备的干扰

对于计算机网络、通信、有线电视、报警与楼宇自动化等弱电设备,电力系统中的谐波通过电磁感应、静电感应与传导方式耦合到这些系统中,产生干扰.其中电感应与静电感应的耦合强度与干扰频率成正比,传导则通过公共接地耦合,有大量不平衡电流流入接地极,从而干扰弱电系统。

错误!影响电力测量的准确性

目前采用的电力测量仪表中有磁电型和感应型,它们受谐波的影响较大。特别是电能表(多采用感应型),当谐波较大时将产生计量混乱,测量不准确。 错误!谐波对人体有影响

从人体生理学来说,人体细胞在受到刺激兴奋时,会在细胞膜静息电位基础上发生快速电波动或可逆翻转,其频率如果与谐波频率相接近,电网谐波的电磁辐射就会直接影响人的脑磁场与心磁场。

4。2。3抑制谐波的解决方案

针对地铁BAS系统,最严重的谐波源就是变频器,其产生和危害性在4。2.1和4.2。2中已经作了详细的介绍,下面以变频器为例重点论述应对措施。 一.如何正确处理变频器与周边设备的关系

1。 变频器本身对外界的无线电干扰通过以下措施减轻

错误!如图4—1所示,在变频器的输入、输出侧加装FIL1和FIL2无线电干扰抑制电抗器。这一类电抗器属于共模抑制电抗器,或称零序电抗器,它对被穿过磁芯的几根导线上出现的瞬时相位和幅值不能抵消的干扰有抑制作用,而对被穿过磁芯的几根导线瞬时相加电磁场可完全抵消的干扰就不能抑制,也即对三相正弦波电流不起作用.就无线干扰而言,共模干扰占大多数,所以共模抑制电抗器经常对无线电干扰抑制有效。

第3页 共26页

地铁BAS——抑制谐波方案

图4-1 为降低无线电干扰在输出和输入功率线上 加装FIL1和FIL2磁环形成电抗器对共模干扰进行抑制

2变频器的输入、输出功率电线的布局要防止对周边设备的控制线有电磁场耦合,即要防○

止这些功率电线与某条控制线平行捆扎在一起或过分靠近,如图4-2所示.

图4—2 变频器的控制线与功率输出线及电源

进线过分靠近或捆绑在一起的不良安装

错误!数字式测量仪器仪表的输入阻抗高、频率响应好,很容易敏感变频器本体和输入输出

线所发射出来的无线电干扰,造成数字式测量仪器仪表显示乱跳或完全不能测量。因此要求数字式测量仪器仪表远离变频器及变频器的输入输出线.如远离不可能,应对数字式仪器仪表的本体、测量线进行屏蔽。屏蔽线的外套金属网不能两端接地,只能一端接地,接地端设在数字式仪器仪表侧,由此形成静电屏蔽如图4—3所示,另外一种使用双绞线作为数字式仪器仪表的输入线,每绞间距不得大于1cm。干扰严重时可以综合采用多种措施:双绞线+屏蔽套、屏蔽箱、拉开距离、变频器输入输出线加磁环、加电抗器等。

第4页 共26页

地铁BAS——抑制谐波方案

图4—3 对数字式仪器或其他敏感仪器的抗干扰处理方法

2.外界干扰妨碍变频器正常运行时的对策

○,1由电网引入的干扰和过电压

(a)变压器原边电网因各类用电器切换、雷电等所引起的过电压及干扰会通过变压器分布电容和绕阻耦合传递到变压器付边、使付边电线上出现过电压及干扰.

(b) 与变频器同一付边电源线上有大功率的负载切换,特别是功率因数补偿柜之类的容性负载切换,会在电源线上引起过电压,这种过电压的大小与切换电流的大小、突变速率和电网导线电感值有关.例如:如图4—4所示的负载N经由断路器KM2突然断开时,因电网导线电感(La、Lb、Lc)的存在,会在接往变频器的导线上产生过电压或干扰

图4-4 过电压和干扰传输途径及为减弱过电压和干扰所附加的各种措施及元件 (c) 在变频器同一电源上接有强干扰负载或晶闸管器件,会造成电网电流严重畸变,引起在正弦波电压上叠加尖峰过电压和干扰.

错误!由周边电器的无线电干扰引起变频器不能正常工作。变频器本身如果是全金属外壳就

有良好的屏蔽辐射干扰的作用,如果是塑料外壳,变频器设计中又没有很好的抗干扰措施,此时就要另外采取措施;

第5页 共26页

地铁BAS——抑制谐波方案

错误! 减轻外界干扰的对策:

(a)在变频器电源输入端加交流电抗器1ACL、无线电吸收电抗器FIL1.

(b) 过电压的减弱程度与变频器前端电源线长度、布局等有关。当电源线长时,由变压器来的过电压和干扰在电源线的电感上会衰减,此时由变频器内部的压敏电阻、电容吸收比较有效.但当变频器与配电用变压器靠近时,电源线阻抗太小,过电压发生时没有在电源线上得到衰减,因此强大的过电压到达变频器压敏电阻上,甚至会使压敏电阻爆炸。为此加入进线侧交流电抗器ACL1实有必要。

(c) 对于变频器外控端子上因外界干扰造成不能正常工作时可采用如下对策:    

使用继电器中继方式,使受干扰的线路完全隔离

如图4-5所示,在外控端上并电容,降低输入阻抗、使干扰衰减 在外控端子使用双绞线作控制(图4-5)

对塑料外壳变频器考虑装在屏蔽箱内,但必需有良好通风冷却配合

图4-5 减轻外控输入端上外来干扰的方法

3。变频器引起电网波形畸变,使部分设备工作不正常

通用变频器因都是采用整流桥→电容滤波→逆变方式、即交-直-交方式,整流和电容滤波的使用,会造成电网交流电压正弦波的顶端因电容吸收能量而变平,在电网内阻大的条件下,使电网电压波形畸变到足已使一部份电器工作不正常和发生保护动作.

例如:电扶梯、制冷机等,它们的电机都有对相位的要求,在设备中都使用了相序保护器,当电网波形畸变严重时,相序保护器因电压波形畸变而动作,使电机不能接通电源,因此,电梯和制冷机完全不能工作。

当线电压的波形顶端因变频器的整流和电容滤波使波形变成平顶波时,此时相电压波形恰变成尖顶波。一般整流式电压表都是测得峰值电压,再按正弦波比例折算成有效值而显示,波形的变坏使显示的“相电压有效值\"偏高,“线电压有效值”偏低,这可以从图4-6的波形分析图上看出来。在这样的恶劣畸变下,不少用电器会因“电压过低”“电压过高”而报警,使现场某些设备不能工作。

第6页 共26页

地铁BAS——抑制谐波方案

图4—6 整流性电容滤波负载造成电网电压、电流波形的严重畸变

要解决这类因整流—电容滤波负载造成的电网波形畸变,有效方法是:

a在配电变压器(或发电机)后面的整流—电容滤波型变频器的总负载容量不要太大,一般小于配电变压器容量的1/10以下;

b变频器要配置直流电抗器和输入侧交流电抗器,而且选择电抗器的电感量大一些为好。直流电抗器电感量越大,电流连续性越好,对功率因数改善越有利。图4-7是不同电感量的直流电抗器在变频器中使用的功率因数趋向。图中THD是谐波总畸变,cosΦ是输入功率因数,使用大的直流电抗器可以大大降低谐波总畸变和提高功率因数。

第7页 共26页

地铁BAS——抑制谐波方案

图4—7 变频器在不同直流电抗器时的功率因数和总谐拨畸变

c有条件的情况下要使用有PFC(功率因数校正)技术的三相和单相变换器作为变频器的输入或者采用经过移相变压器绕阻的12脉整流技术,以改善畸变,但这都涉及到变频器内部整流滤波级的改型设计.

二.变频器安装后的调试注意事项 1。通电前检查

a察看变频器安装空间、通风情况、是否安全足够;铭牌是否同电机匹配;控制线是否布局合理,以避免干扰;进线与出线绝对不得接反,变频器的内部主回路负极端子N不得接到电网中线上(不少电工误认为N应接电网中线),各控制线接线应正确无误。

b当变频器与电机之间的导线长度超过约50m,当该导线布在铁管或蛇皮管内长度超过约30m,特别是一台变频器驱动多台电机等情况,存在变频器输出导线对地分布电容很大,应在变频器输出端子上先接交流电抗器,然后接到后面的导线上,最后是负载,以免过大的电容电流损坏逆变模块。在输出侧导线长的时候,还要将PWM的调制载频设置在低频率,以减少输出功率管的发热,以便降低损坏的概率.

c确认变频器工作状态与工频工作状态的互相切换要有接触器的互锁,不能造成短路,并且两种使用状态时电机转向相同.

d根据变频器容量等因素确认输入侧交流电抗器和滤波直流电抗器是否接入。一般对22kW以上要接直流电抗器,对45kW以上还要接交流电抗器。

e电网供电不应有缺相,测定电网交流电压和电流值、控制电压值等是否在规定值,测量绝缘电阻应符合要求(注意因电源进线端压敏电阻的保护,用高电压兆欧计时要分辩是否压敏电阻已动作)。 2.通电和设定

第8页 共26页

地铁BAS——抑制谐波方案

a通电

通电后首先观察显示器,并按产品使用手册变更显示内容,检查有否异常.听看风机运转否,有的变频器使用温控风机,一开机不一定转,等机内温度升高后风机才转。检查进线和出线电压,听电机运转声音是否正常,检查电机转向反了没有,反了首先要更换电机线校正。 b设定

设定前先读懂产品使用手册,电机能脱离负载的先脱离负载。变频器在出厂时设定的功能不一定刚好符合实际使用要求,因此需进行符合现场所需功能的设定,一般设定内容有:频率、操作方法、最高频率、额定电压、加/减速时间、电子热过载继电器、转矩、电机极数等等。对矢量控制的变频器,要按手册设定或自动检测。并在检查设定完毕后进行验证和储存。 3。试运行

错误!空载运行

将电机所带的负载脱离或减轻,作以下空载运行检查: a检查电机转向;

b各频率点有否异常振动、共振、声音不正常,如有共振应设法使变频器频率设定点避开该点;

c 按设定的程序从头到尾试一遍确认没有问题;

d模拟日常会发生的操作,将各种可能操作做一遍确认无误;

e 听电机因调制频率产生的振动噪声是否在允许范围内,如不合适可更改调制频率,频率选高了振动噪音减小,但变频器温升增加,电机输出力矩有所下降,可能的话,调制频率低一些为好;

f测量输出电压和电流对称程度,对电机而言不得有10%以上不平衡。

错误!负载试运行

a按正常负载运行,用钳型电流表测各相输出电流是否在预定值之内(观察变频器自显示电流也可,两者略有差别)。

b对有转速反馈的闭环系统要测量转速反馈是否有效。做一下人为断开和接入转速反馈,看一看对电机电压电流转速的影响程度。

c检查电机旋转平稳性,加负载运行到稳定温升(一般3h以上)时,电机和变频器的温度有否太高,如有太高应调整,调整可从改变以下参数着手:负载、频率、V/f曲线、外部通风冷却、变频器调制频率等。

第9页 共26页

地铁BAS——抑制谐波方案

d试验电动机的升降速时间有否过快过慢,不适合应重新设置。

e试验各类保护显示的有效性,在允许范围内尽量多做一些非破坏性的各种保护的确认。

f按现场工艺要求试运行一周,随时监控,并做好记录作为今后工况数据对照。

4。2。4谐波抑制的工程设计方法

随着大功率半导体电力变流器、变频器等电力电子设备的广泛应用,愈来愈多的谐

波电流被注入了电网,由于电力电子器件的非线性工作特性决定了基波电流滞后,且谐波的消极影响越来越严重,因此,如何有效地抑制谐波是电力设计中的一项重要内容。 一。对谐波进行分析

(1)增加了无功功率消耗和铜损

在电流波形畸变的情况下,电力系统的视在功率应为: S2=P2+Q2+T2 (1) 式中:S为视在功率; P为有功功率; Q为无功功率; T为畸变功率.

由于谐波电压和电流的频率不同,其相角差随频率差作周期性变化,累计的功率之和为零,所以畸变功率具有无功功率性质.

谐波电流将使电力系统中的元件如电动机产生谐波铜耗、谐波杂散损耗及谐波铁耗。谐波损耗的存在使得电动机总损耗增加,温升增加及效率降低.电动机将多吸收无功功率,导致功率因数下降。

(2)含有高次谐波的电压加在电容器两端时,由于电容器对高次谐波阻抗很小,谐波电流加在电容器的基波上,使电容器的总运行电流增大,温升提高,很容易发生过负荷以至损坏,导致使用寿命缩短。同时,谐波对电容器参数匹配产生影响,有可能在电网中造成高次谐波谐振,使故障加剧。

(3)由于谐波引起控制系统误差造成触发角偏移及电流、电压变化率过高,引起晶闸管故障,甚至引起变流装置、自动控制装置的控制失灵和误动作,进而造成系统故障。 (4)持续的谐波含量过高,将加速变压器、电动机、电力电缆的绝缘老化而使其容易被击穿.某些情况下,特别在瞬态过程中,还可能引起谐振过电压。

第10页 共26页

地铁BAS——抑制谐波方案

(5)谐波电压和谐波电流通过线路间的感应耦合,会在通讯线路中感应出相当大的谐波电压,从而对通讯线路造成干扰,影响通信网络的正常工作. 二.谐波抑制的工程设计要点

根据GB/T1454993《电能质量公用电网谐波》的要求,必须对各种非线性负荷注入电网的谐波电压和谐波电流加以。

在供电设计中,加大系统短路容量;提高供电电压等级;增加变流装置的脉动数;改善系统的运行方式,如:尽可能保持三相负荷平衡,避免各类电磁系统饱和,错开系统谐振点,由专门电路为谐波源负载供电等,都能减小系统中的谐波成份。但其中许多措施都会大大增加系统和设备的投资,且有些方法的效果并不一定很理想。因此,设置交流滤波器是有效抑制谐波和改善波形的积极措施,同时滤波器还能向系统提供所需的部分或全部无功. 整流器、逆变器等非线性负荷,因为其本身可以表示为产生高次谐波电流的恒流源,故可用图1来表示高次谐波的等效电路.

流向电网的谐波电流IS和母线的谐波电压VB可表示为: IS=InZL/(ZS+ZL) VB=ISZS (2) 式中:IS为注入电网的谐波电流; In为谐波电流; VB为谐波电压; ZS为电网阻抗; ZL为电网负载阻抗。

第11页 共26页

地铁BAS——抑制谐波方案

该式表明,当电网阻抗(ZS)一定时,相对减小系统负载阻抗(ZL),就可以减小流向电网的谐波电流和母线的谐波电压(电压畸变)。谐波干扰取决于流向电网的谐波电流或电压畸变的大小。抑制谐波的目的,就是要降低流向电网的谐波电流。 因此,可以采取以下两种措施:

(1)对于电力系统,设置谐波低阻抗的分流电路,从而减小负载阻抗ZL,降低注入电网的谐波电流IS;

(2)提供逆相位的谐波,以抵消非线性负荷所产生的谐波电流In,达到消除谐波的目的。 前者称为被动式滤波器,即常用的LC滤波器;后者称为能动式滤波器,即有源滤波器。 三.LC滤波器的设计

LC滤波器是利用LC谐振原理,人为地造成一条串联谐振支路,为欲滤除的主要谐波提供阻抗极低的通道,使之不注入电网.根据其电容器与电抗器的联接方式不同,主要常用的有单调谐滤波器和高通滤波器。它们的结构和阻抗特性如图2、图3所示。

第12页 共26页

地铁BAS——抑制谐波方案

单调谐滤波器的谐振次数和品质因数分别为:

谐波阻抗为:

Zfn=Rfn+j(nXL1-XC1/n)≈Rfn(1+j2δQn) (4) 上二式中:XC1为电容器组的基波容抗; XL1为电抗器的基波感抗; XLn为电抗器在n次谐波时的感抗; Rfn为滤波器在n次谐波时的电阻; δ为电网角频率相对偏差。

由于系统频率的波动、滤波电容器及电抗器有关参数制造时的偏差、电抗器的调节偏差,以及环境温度和负荷的变化,滤波器的实际谐振频率可能与其设计值不完全相同,即在偏离设计值的一定范围内变化。一般情况下,单调谐滤波器在Qn=1/2δ时有最好的滤波效果,即注入电网的谐波电流最小。

由图2(b)可知,单调谐滤波器的滤波效果与δ和Qn有直接关系。Qn越大,曲线越尖锐,但越容易失谐,滤波效果下降越快;Qn过小时,滤波效果在较大范围内变化不大,但效果较低,此时损耗也较大。所以,Qn和δ的确定要经过多种方案比较,并兼顾各个指标后选取。

对于高通滤波器,由于其电抗器L与电阻R并联,有一个较低的阻抗频率范围。当频率低于某一截止频率f0(f0=1/2πRC)时,由于容抗增加使滤波器阻抗明显增加,低次谐波

第13页 共26页

地铁BAS——抑制谐波方案

电流难于通过;当频率高于f0时,由于容抗不大,总的阻抗也变化不大,形成一个通频带。 与单调谐滤波器相反,其品质因数Qn=Rfn/XLn。这是因为在高通滤波器中,电阻R与电抗器L并联,电阻越大,调谐越尖锐;而在单调谐滤波器中,电阻R与电抗器L串联,电阻越小,调谐越尖锐.但无论是单调谐滤波器还是高通滤波器,品质因数是标志调谐锐度的指标.对于高通滤波器,Qn值一般取1~5。由图3(b)可以看出,即使在调谐频率附近,频率偏差也影响不大。

高通滤波器截止频率应选择靠近要滤的主要谐波,否则其损耗将大大增加。

对于某次谐波,要达到同样的滤波效果,采用单调谐滤波器将大大减小容量,但高通滤波器有综合滤波功能,它可以同时滤除若干次高次谐波,减少滤波电路数。因此,在滤波方案选择时,对于主要的谐波,宜用单调谐滤波器;而对若干较高次谐波,且谐波电流值不大,宜选用一组高通滤波器。当结合所需无功补偿容量考虑时,许多情况下,用几组单调谐滤波器加一组高通滤波器是比较经济可行的方案。

如图4为某镀锡薄板厂用LC滤波器的典型构成。

由式(2)可知,LC滤波器的滤波效果取决于电源阻抗和滤波器内部阻抗的相互关系,由于滤波器并联在电路中,其本身就是阻抗因素,容易受电源已有高次谐波畸变的影响。因此,在设计时应充分考虑以下几方面因素:

(1)电源的阻抗条件。根据系统接线,变压器参数或拟装设滤波器处母线电压及短路容量,计算系统的谐波阻抗;电网频率波动范围和滤波电容器及电抗器的调节偏差等因素构成的等值频率偏差;

(2)在工频范围内,滤波器和电容器有着相同的功能,协调系统的超前相位容量,从而有效减小滤波器容量,降低滤波器造价;电网已有高次谐波电压对滤波器可能造成的过载影响;变流器负载所产生的高次谐波量,确定滤波器的定额;

(3)高次谐波抑制指标。根据《电能质量公用电网谐波》的规定,确定各次谐波电压畸变率和注入相应电压等级电网的谐波电流允许值。

LC滤波器结构简单,吸收谐波效果明显.但由于其结构原理上的原因,在应用中存在着难以克服的缺陷:

第14页 共26页

地铁BAS——抑制谐波方案

(1)仅对固有频率的谐波有较好的补偿效果,当谐波成份变化时补偿效果差; (2)补偿特性受电网阻抗的影响很大;

(3)在特定频率下,电网阻抗和LC滤波器之间可能会发生并联谐振,使该频率的谐波电流被放大;或者发生串联谐振,使电网侧可能存在的谐波电压向LC滤波器注入较大的谐波电流;

(4)当接在电网中的其他谐波源未采取滤波措施时,其谐波电流可能流入该滤波器,造成过载。

而有源滤波器能对变化的谐波进行迅速的跟踪补偿,基本上克服了LC滤波器的上述缺点。

四.有源滤波器的应用

随着功率电子器件和PWM技术的发展,基于瞬时无功功率理论的谐波电流瞬时检测法的提出,使有源滤波器得到迅速发展.

前述可知,LC滤波器实际上是由滤波电容器和电抗器组成的、对某些或某次谐波呈低阻抗谐振支路,滤除这些谐波。而有源滤波器与LC滤波器的最大区别在于它是一种向系统注入补偿谐波电流,以抵消非线性负荷所产生的谐波电流的能动式滤波装置.它能对变化的谐波进行迅速的动态跟踪补偿,且补偿特性不受系统阻抗影响。其结构上由静态功率变流器构成,具有半导体功率器件的高可控性和快速响应能力。 有源滤波器的工作原理如图5所示。 负载电流IL按傅里叶级数可展开为: IL=ΣInsin(nωt+θn)

=I1cosθ1sinωt+I1sinθ1cosωt+ΣInsin(nωt+θn) =I1p+I1q+In (5) 式中:I1p为负载基波有功电流; I1q为负载基波无功电流; In为高次谐波电流.

第15页 共26页

地铁BAS——抑制谐波方案

将滤波器并联连接在谐波发生源和电源之间,Is=IL+IF。控制有源滤波器的输出电流IF=-In,电源侧电流则为只含基波分量的正弦波形。即:有源滤波器产生一个与负载谐波电流幅值相等、相位相反的电流注入负载电流IL流经的线路中,将负载谐波抵消,使之不流入电网。由式(5)可知,有源滤波器还可同时补偿无功,即使IF=-I1q-In,IS=-I1p,从而提高系统功率因数。

有源滤波器的基本结构由谐波电流检测、控制电路、PWM逆变器、直流电源及注入变压器等部分组成。根据逆变器储能元件不同,可将有源滤波器分为电流型和电压型两种。电流型有源滤波器储能元件为电感,由于其运行损耗较大,对储能电感的充电控制较复杂,因而使其应用受到;电压型有源滤波器储能元件为电容,具有损耗小,易于控制等优点而得到普遍应用。电压型有源滤波器工作过程是由电容器构成储能直流电源,逆变器根据检测信号产生PWM输出电压,将储存在电容器中直流电能转变成所需频率和波形的补偿电流,经隔离变压器注入线路中。PWM逆变器同时兼有向电抗器或电容器提供直流电能的功能。这个过程直接受谐波电流补偿量检测及控制电路的控制。 有源滤波器具有以下特点:

(1)该装置是一个谐波电流源,它的接入对系统阻抗不会产生影响; (2)系统结构发生变化时,该装置不存在产生谐振的危险,不影响补偿性能;

(3)不存在过载问题。当系统谐波电流增大超过装置的补偿能力时,滤波器仍可发挥最大补偿作用;

第16页 共26页

地铁BAS——抑制谐波方案

(4)对系统中各次谐波均能有效抑制;

(5)一台装置即可实现对多次谐波和基波无功电流的实时动态跟踪补偿。

但是,与LC滤波器相比,有源滤波器的结构相对复杂,运行损耗较大,设备造价高。由于有源滤波器本身是以开关方式工作,在补偿谐波的同时,也会注入新的谐波,但其开关频率很高(达3kHz以上),谐波频率高,幅值低。

有源滤波器可用于抑制负载为周期性变化的高次谐波和LC滤波器不能抑制的部分高次谐波。表1为有源滤波器的两种接线方式比较.

直接接入方式是有源滤波器与系统的基本连接方式.此时PWM逆变器相当于一个受控电流源,其产生与负载谐波大小相等、相位相反的谐波电流,使电源侧电流被补偿成正弦。该方式下,电源基波电压全部加在逆变器上,因而装置容量较大。该接线方式的滤波器具有连续调节无功功率的功能,能在补偿谐波的同时动态补偿系统无功。

注入电路方式的有源滤波器将电抗器和电容器作为逆变器注入电路,利用电感和电容的谐振特性,使有源滤波器不承受基波电压,从而减小了逆变器的装置容量,减小体积,降低成本.通过选择注入电路常数,使逆变器的装置容量仅为直接接入方式的1/4~1/5,因此适于构成高压电路的大型滤波装置。

有源滤波器也可与LC滤波器并联或串联组成混合结构进行组合运用。当并联使用时,LC滤波器用来分担补偿相同次数的谐波,补充有源滤波器的补偿作用,降低所需逆变器的容量。而采用串联方式运用时,有源滤波器则主要不是用来直接补偿谐波,而是用来抑制LC滤波器与电网阻抗之间的并联谐振,即所谓的谐波放大现象,以改善LC滤波器的补偿效果.此时,逆变器不承受基波电压,装置容量小。

图6为明电舍株式会社生产的有源滤波器原理电路图。该装置可以有效滤除2~19次谐波,谐波抑制率达85%以上,动态响应时间小于1ms.

第17页 共26页

地铁BAS——抑制谐波方案

5.工业通讯网络及工业现场总线

5。1有关工业通讯网络及工业现场总线的问题

根据地铁车站的环境条件,提出车站BAS工业通讯网络和工业现场总线采用何种通讯介质(双绞/同轴电缆或光纤).不同介质的最远传输距离、站间传输距离及工业通讯网络和工业现场总线的传输速率。

5。2有关工业通讯网络及工业现场总线问题的答复

5。2。1总线问题综述

根据地铁车站实际环境条件,通讯介质选用双绞线/同轴电缆或光纤均成可能。当然,如果不考虑工程成本,当然选择光纤介质通讯是最可靠最安全的.如果通讯距离不是很远,也没有很强的干扰因素,可采用双绞线/同轴电缆,部分距离超出范围,而且处于容易干扰的环境时,可改用光纤连接,这样既经济又能保证通讯品质,也是很好的选择方案。

至于传输距离和通讯速率不能以介质来衡量。如果使用同种通讯协议的条件下,光纤介质通讯距离和通讯速率远远优于双绞线/同轴电缆,具体通讯距离和通讯速率应该由通讯协议本身决定。下面介绍一下现场总线通讯协议及各协议采用不同的传输介质的性能比较。

5。2。2总线种类及执行标准

现场总线是用于过程控制现场仪表与控制室之间的一个标准的、开放的、双向的多站数字通信系统。随着计算机技术、通讯技术、集成电路技术的发展,以全数字式现场总线(FIELDBUS)为代表的互联规范,正在迅猛发展和扩大.由于采用现场总线将使控制系统结构简单,系统安装费用减少并且易于维护;用户可以自由选择不同厂商、不同品牌的现场设备达到最佳的系统集成等一系列的优点。近十几年由于现场总线的国际标准不能建立,现场总线发展的种类较多,约有40余种:如德国西门子公司Siemens的ProfiBus,法国的FIP,英国的ERA,挪威的FINT,Echelon公司的LONWorks,PhenixContact公司的InterBus,RoberBosch公司的CAN,Rosemounr公司的HART,CarloGarazzi公司的Dupline,丹麦ProcessData公司的P-net,PeterHans公司的F—Mux,以及ASI(ActraturSensorInterface),MODBus,SDS,Arcnet,国际标准组织-基金会现场总线FF:FieldBusFoundation,WorldFIP,BitBus,美国的DeviceNet与ControlNet等等。各种总线符合的标准如下:

丹麦国家标准DSF21906:P-Net

德国国家标准DIN19245(1—2):ProfiBus—FMS 德国国家标准DIN19245(3):ProfiBus-DP 德国国家标准DIN19245(4):ProfiBus—PA 法国国家标准FIPC46601—607:WorldFIP 日本JEMA标准CC—Link

美国国家标准ANSI/NEMA以等同方式支持的ISA/IEC标准草案 1)ISA/IEC61158—1总论; 2)ISA/IEC61158-2物理层规范

3)ISA/IEC61158—3链路层服务定义1998/09/30未通过

第18页 共26页

地铁BAS——抑制谐波方案

4)ISA/IEC61158—4链路层规范;1998/09/30未通过 5)ISA/IEC61158-5应用层服务定义;1998/09/30未通过 6)ISA/IEC61158—6应用层规范;1998/09/30未通过 7)ISA/IEC61158-7管理系统 8)ISA/IEC61158-8一致性试验

9)ISA/IEC61804过程控制模块欧洲标准EN50170(CLC65CX) Vol.IP-Net

Vol。IIProfiBus Vol.IIIWorldFIP

Vol.IVFF,联合国(UK)IEC国家委员会提议

Vol.VControlNet,联合国(UK)IEC国家委员会提议 欧洲标准EN50254(CLC65CX) 1)ProfiBusDP 2)FIPDWF 3)Interbus

欧洲标准EN50295(CLCTC17B) 1)ASI

欧洲标准prEN50325

1)DeviceNet美国Rockwell 2)SDS美国Honeywell 国际标准ISO118 1)德国CANbus; 2)美国DeviceNet; 3)特性接近ProfiBus;

国际标准IEC62026(IECSC65C) 1)ASI法国、德国

2)DeviceNet美国Rockwell 3)SDS美国Honeywell

5。2。3总线举例

总线的种类很多,下面只对基金会现场总线FF;ProfiBus;WorldFIP;ControlNet/DeviveNet;CAN;CC—Link进行介绍:

1、基金会现场总线FF

现场总线基金会包含100多个成员单位,负责制订一个综合IEC/ISA标准的国际现场总线。它的前身是可互操作系统协议ISP(InterperableSystemProtocol)—-基于德国的ProfiBis标准,和工厂仪表世界协议WORLD (WorldFactoryInstrumentationProtocol)-—基于法国的FIP标准。ISP和WORLDFIP于1994年6月合并成立了现场总线基金会.

基金会现场总线采用国际标准化组织ISO的开放化系统互联OSI的简化模型(1,2,7层)。另外增加了用户层.

基金会现场总线是国际上几家现场总线经过激烈竞争后形成的的一种现场总线,由现场总线基金会推出。与私有的网络总线协议不同,FF总线不附属于任何一个企业或国家.其总线体系结构是参照、ISO的OSI模型中物理层、数据链路层和应用层,并增加了用户层而建立起来的通信模型。FF得到了世界上几乎所有的著名仪表制造商的支持,同时遵守IEC的协议规划,与IEC的现场总线国际标准和草案基本一致,加上它在技术上的优势,所以极有希望成为将来的主要国际标准。

FF总线采用屏蔽双绞线通讯介质,提供了Hl和H2两种物理层标准.Hl是用于过程控制的低速总线,传输速率为31。25Kbps,传输距离为200m、450m、1200m、1900m四种(加中继器可以延长),可用总线供电,支持本质安全设备和非本质安全总线设备.H2为高速总线,

第19页 共26页

地铁BAS——抑制谐波方案

其传输速率为1Mbps(此时传输距离为750m)或2.5bps(此时传输距离为为500m).H1和H2每段节点数可达32个,使用中继器后可达240个,Hl和H2可通过网桥互连.FF的突出特点在于设备的互操作性、改善的过程数据、更早的预测维护及可靠的安全性。

2、ProfiBus

ProfiBus自1984年开始研制现场总线产品,现以成为欧洲首屈一指的开放式现场总线系统,欧洲市场占有率大于40%,广泛应用于加工自动化、楼宇自动化、过程自动化、发电与输配电等领域。1996年6月ProfiBus被采纳为欧洲标准EN50170第二卷.PNO为其用户组织,核心公司有:Siemens公司,E+H公司,Samson公司,Softing公司等。

ProfiBus技术特性:ProfiBus以ISO7498为基础,以开放式系统互联网络OSI(OpenSystemInterconnection)作为参考模型,定义了物理传输特性,总线存取协议和应用功能.ProfiBus家族包括ProfiBus-DP,ProfiBus—PA,ProfiBus-FMS.ProfiBus-DP(DecentralizedPeriphery)是一种高速和便宜的通信连接,用于自动控制系统和设备级分散的I/0之间进行通信。ProfiBus—FMS(FieldBusMessageSpecification)用来解决车间级通用性通信任务.与LLI(LowerLayerInterface)构成应用层,FMS包括了应用协议并向用户提供了可广泛选用的强有力的通信服务,LLI协调了不同的通信关系并向FMS提供了不依赖设备访问数据链层.ProfiBus-PA(ProcessAutomation)专为过程自动化而设计的,它可使传感器和执行器接在一根共用的总线上。根据IEC61158—2国际标准,ProfiBus—PA可用双绞线供电技术进行数据通信,数据传输采用扩展的ProfiBus—DP协议和描述现场设备的PA行规。当使用电缆耦合器,ProfiBus—PA装置能很方便的连接到ProfiBus—DP网络.

Profibus由Siemens公司提出并极力倡导,己先后成为德国国家标准DIN19245和欧洲标准EN50170,是一种开放而的总线标准,在机械制造、工业过程控制、智能建筑中充当通信网络。Profibus由Profibus-PA、Profibus-DP和Profibus-FMS三个系列组成。Profibus—PA (Process Automation)用于过程自动化的低速数据传输,其基本特性同FF的H1总线,可以提供总线供电和本质安全,并得到了专用集成电路(ASIC)和软件的支持。Profibus—DP与Profibus-PA兼容,基本特性同FF的H2总线,可实现高速传输,适用于分散的外部设备和自控设备之间的高速数据传输,用于连接Profibus—PA和加工自动化。Profibus—FMS适用于一般自动化的中速数据传输,主要用于传感器、执行器、电气传动、PLC、纺织和楼宇自动化等。后两个系列采用RS485通信标准,传输速率从9。6kbps到12Mbps,传输距离从1200M到l00m(与传输速率有关).介质存取控制的基本方式为主站之间的令牌方式和主站与从站之间的主从方式,以及综合这两种方式的混合方式。Profibus是一种比较成熟的总线,在工程上的应用十分广泛。

3、WorldFIP

WorldFIP协会成立于1987年3月,以法国CEGELEC、SCHNEIDER等公司为基础开发了FIP(工厂仪表协议)现场总线系列产品。协会有100多个成员,产品在法国市场占有率大于60%,欧洲约25%。产品适用于发电与输配电、加工自动化、铁路运输、地铁和过程自动化等领域.1996年6月WorldFIP被采纳为欧洲标准EN50170.WorldFIP是一个开放系统,不同系统、不同厂家生产的装置都可以使用WorldFIP,应用结构可以是集中型、分散型和主站—从站型。WorldFIP现场总线构成的系统可分为三级:过程级、控制级和监控级,这样用单一的WorldFIP总线就可以满足过程控制、工厂制造加工系统和各种驱动系统的需要了。

WorldFIP协议有物理层、数据链路层和应用层组成.应用层定义为两种:MPS定义和SubMMS定义。MPS是工厂周期/非周期服务,SubMMS是工厂报文的子集。

物理层的作用能够确保连接到总线上的装置间进行位信息的传递。介质是屏蔽双绞线或光纤.传输速度有31。25kb/s,1Mb/s和2。5Mb/s,标准速度是1Mb/s,使用光纤时最高可达5Mb/s。

WorldFIP的帧有三部分组成,即帧起始定界符(FSS),数据和检验字段,以及帧结束定界符.

应用层服务有三个不同的组:BAAS(Bus Arbitrator Application Services),MPS(Manufacturing Periodical / a Periodical Services),SubMMS(Subset of Messaging Services).MPS服务提供给用户:本地读/写服务,远方读/写服务,参数传输/接收指示,使用信息的刷新等。

处理单元通过WorldFIP的通信装置(通信数据库和通信芯片组成)挂到现场总线上。通信芯片包括通信控制器和线驱动,通信控制器有FIPIU2,FIPCO1,

第20页 共26页

地铁BAS——抑制谐波方案

FULLFIP2,MICROFIP等,线驱动器用于连接电缆(FIELDRIVE,CREOL)或光纤(FIPOPTIC/FIPOPTIC-TS)。通信数据库用于在通信控制器和用户应用之间建立链接。

4、ControlNet/DeviveNet

ControlNet的基础技术是在RockwellAutomation企业于1995年10月公布.1997年7月成立了ControlNetInternational组织(http://www.controlnet。org),Rockwell转让此项技术给该组织.组织成员有50多个如ABBRoboties,HoneywellInc。,YokogawaCorp。,ToshibaInternational,Procter&Gamble,OmronElectronicsInc.等。DeviceNet的相关网址(http://www。odva。org/)

传统的工厂级的控制体系结构有五层即工厂层、车间层、单元层、工作站层、设备层组成。而Rockwell自动化系统简化为三层结构模式:信息层(Ethernet以太网),控制层(ControlNet控制网),设备层(DeviceNet设备网)。ControlNet层常传输大量的I/O和对等通讯信息,具有确定性和可重复性的,紧密联系控制器和I/O设备的要求。它具备如下特点:1)ControlNet在单根电缆上支持两种类型的信息传输:有实时性的控制信息和I/O数据传输,无时间苛求的信息发送和程序上/下载;2)ControlNet技术采取了一种新的通信模式,以生产者/客户模式取代了传统的源/目的模式它不仅支持传统的点对点通讯,而且允许同时向多个设备传递信息。生产者/客户模式使用时间片算法保证各节点实现同步,从而提高了带宽利用率;3)ControlNet使用同轴电缆可达6km,节点数99个,两个节点间距离最长达1000m,48个节点距离可长达250m,采用光纤和中继器后通讯距离可达几十公里。ControlNet应用于过程控制,自动化制造等领域。

5、CAN

CAN(ControllerAreaNetwork)称为控制局域网,属于总线式通讯网络。CAN总线规范了任意两个CAN节点之间的兼容性,包括电气特性及数据解释协议,CAN协议分为二层:物理层和数据链路层。物理层决定了实际位传送过程中的电气特性,在同一网络中,所有节点的物理层必须保持一致,但可以采用不同方式的物理层。CAN的数据链路层功能包括帧组织形式,总线仲裁和检错、错误报告及处理,确认哪个信息要发送的,确认接收到的信息及为应用层提供了接口。CAN网络具有如下特点:CANBUS网络上任意一个节点均可在任意时刻主动向网络上的其它节点发送信息,而不分主从.通讯灵活,可方便地构成多机备份系统及分布式监测、控制系统。网络上的节点可分成不同的优先级以满足不同的实时要求。采用非破坏性总线裁决技术,当两个节点同时向网络上传送信息时,优先级低的节点主动停止数据发送,而优先级高的节点可不受影响地继续传输数据。具有点对点,一点对多点及全局广播传送接收数据的功能。通讯距离最远可达10KM/5KBPS,通讯速率最高可达1MBPS/40M。网络节点数实际可达110个。每一帧的有效字节数为8个,这样传输时间短,受干扰的概率低.每帧信息都有CRC校验及其它检错措施,数据出错率极低,可靠性极高.通讯介质采用廉价的双绞线即可,无特殊要求。在传输信息出错严重时,节点可自动切断它与总线的联系,以使总线上的其它操作不受影响。

6、CC—Link

一.开放式现场总线CC-Link技术背景

以三菱电机为主导的多家公司以“多厂家设备环境、高性能、省配线”理念开发、公布和开放了现场总线CC-Link,第一次正式向市场推出了CC—Link这一全新的多厂商、高性能、省配线的现场网络。

CC—Link是Control& Communication Link (控制与通信链路系统)的简称。即:在工控系统中,可以将控制和信息数据同时以10Mbps高速传输的现场网络。CC—Link具有性能卓越、应用广泛、使用简单、节省成本等突出优点。作为开放式现场总线,CC-Link是唯一起源于亚洲地区的总线系统,CC—Link的技术特点尤其适合亚洲人的思维习惯,并在全球广泛的应用。

二.CC-Link的通讯原理

第21页 共26页

地铁BAS——抑制谐波方案

CC-Link的底层通讯协议遵循RS485,具体的通讯方式请参照下图B9—08。

图B9-08

CC-Link提供循环传输和瞬时传输2种通信方式。一般情况下,CC—Link主要采用广播-轮询(循环传输)的方式进行通讯。具体的方式是:主站将刷新数据(RY/RWw)发送到所有从站,与此同时轮询从站1;从站1对主站的轮询作出响应(RX/RWr),同时将该响应告知其它从站;然后主站轮询从站2(此时并不发送刷新数据),从站2给出响应,并将该响应告知其它从站;依此类推,循环往复。广播-轮询时的数据传输帧格式请参照下图,该方式的数据传输率非常高。除了广播-轮询方式以外,CC—Link也支持主站与本地站、智能设备站之间的瞬时通讯。从主站向从站的瞬时通讯量为150字节/数据包,由从站向主站的瞬时通讯量为34字节/数据包。瞬时传输时的数据传输帧格式请参照下图,由此可见瞬时传输不会对广播轮询的循环扫描时间造成影响.

所有主站和从站之间的通讯进程以及协议都由通讯用LSI-MFP(Mitsubishi Field Network Processor)控制,其硬件的设计结构决定了CC—Link的高速稳定的通讯,如下图B9—09所示。

图B9-09

三。CC—Link的卓越性能

一般工业控制领域的网络分为3到4个层次,分别是上位的管理层,控制层和部件层。部件层也可以再细分为设备层和传感器层,CC—Link是一个以设备层为主的网络,同时也可以覆盖较高层次的控制层和较低层次的传感器层。 1。CC—Link的网络结构

第22页 共26页

地铁BAS——抑制谐波方案

现场总线CC—Link的一般系统构成如图B9—10所示:

图B9—10

一般情况下,CC-Link整个一层网络可由1个主站和个子站组成,它采用总方式通过屏蔽双绞线进行连接。网络中的主站由三菱电机FX系列以上的PLC或计算机担当,子站可以是远程I/O模块、特殊功能模块、带有CPU的PLC本地站、人机界面、变频器、伺服系统、机器人以及各种测量仪表、阀门、数控系统等现场仪表设备。如果需要增强系统的可靠性,可以采用主站和备用主站冗余备份的网络系统构成方式。采用第三方厂商生产的网关还可以实现从CC-Link到ASI、S-Link、Unit-wire等等网络的连接。

2.CC-Link的传输速度和距离

CC-Link具有高速的数据传输速度,最高可以达到10Mbps,其数据传输速度随距离的增长而逐渐减慢,传输速度和距离的具体关系如下表B9—10.

表B9-10:传输速度和距离的对应关系

CC-Link的中继器目前有多种:一种为T型分支中继器AJ65SBT-RPT,每增加一个距离延长一倍。一层网络最多可以使用10个。第二种为光中继器AJ65SBT—RPS或AJ65SBT-RPG,用光缆延长,因此在一些比较容易受干扰的环境可以采用。光中继器要成对使用,每一对AJ65SBT-RPS之间的延长距离为1公里,最多可以使用4对;每一对AJ65SBT-RPG之间的延长距离为2公里,最多可以使用2对.第三种为空间光中继器AJ65BT—RPI—10A/AJ65BT—RPI-10B,采用红外线无线传输的方式,在布线不方便,或者连接设备位置会移动的场合使用.空间光中继器也必须成对使用,两者之间的距离不能超过200米,还有一些方便接线的中继器和与其他网络相连的网关和网桥。

第23页 共26页

地铁BAS——抑制谐波方案

CC-Link提供了110欧姆和130欧姆两种终端电阻,用于避免因在总线的距离较长、传输速度较快的情况下,由于外界环境干扰出现传输信号的奇偶校验出错等传输质量下降的情况。

3.CC-Link实现高速大容量的数据传输

CC—Link提供循环传输和瞬时传输2种方式的通信。 每个内存站循环传送数据为24字节,其中8字节(位)用于位数据传送,16字节(4点RWr、4点RWw)用于字传送。一个物理站最大占用4个内存站,故一个物理站的循环传送数据为96个字节。

对于CC—Link整个网络而言,其循环传输每次链接扫描的最大容量是2048位和512字.

在循环传输数据量不够用的情况下,CC—Link提供瞬时传输功能,可将960字节的数据,用指令传送给目标站。

CC—Link在连接个远程I/O站、通信速度为10Mbps的情况下,循环通信的链接扫描时间为3.7毫秒。稳定快速的通信速度是CC—Link的最大优势。 4.CC-Link丰富的功能

1)自动刷新功能、预约站功能

CC-Link网络数据从网络模块到CPU是自动刷新完成,不必有专用的刷新指令;安排预留以后需要挂接的站,可以事先在系统组态时加以设定,当此设备挂接在网络上时,CC-Link可以自动识别,并纳入系统的运行,不必重新进行组态,保持系统的连续工作,方便设计人员设计和调试系统.

2)完善的RAS功能

RAS是Reliability(可靠性)、Availability(有效性)、Serviceability(可维护性)的缩写。例如故障子站自动下线功能、修复后的自动返回功能、站号重叠检查功能、故障无效站功能、网络链接状态检查功能、自诊断功能等等,提供了一个可以信赖的网络系统,帮助用户在最短时间内恢复网络系统。

3)互操作性和即插即用功能

CC—Link提供给合作厂商描述每种类型产品的数据配置文档.这种文档称为内存映射表,用来定义控制信号和数据的存储单元(地址)。然后,合作厂商按照这种映射表的规定,进行CC—Link兼容性产品的开发工作。以模拟量I/O开发工作表为例,在映射表中位数据RX0被定义为“读准备好信号”,字数据RWr0被定义为模拟量数据.由不同的A公司和B公司生产的同样类型的产品,在数据的配置上是完全一样的,用户根本不需要考虑在编程和使用上A公司与B公司的不同,另外,如果用户换用同类型的不同公司的产品,程序基本不用修改。可实现“即插即用”连接设备.

4)循环传送和瞬时传送功能

CC—Link的2种通信的模式:循环通信和瞬时通信。循环通信是数据一直不停地在网络中传送,数据是安站的不同类型,可以共享的,由CC—Link核心芯片MFP自动完成;瞬时通信是在循环通信地数据量不够用,或需要传送比较大的数据(最大960字节),可以用专用指令实现一对一的通信.

5)优异抗噪性能和兼容性

为了保证多厂家网络的良好的兼容性,一致性测试是非常重要的。通常只是对接口部分进行测试。而且,CC-Link的一致性测试程序包含了抗噪音测试。因此,所有CC—Link兼容产品具有高水平的抗噪性能。正如我们所知,能做到这一点的只有CC—Link.除了产品本身具有卓越的抗噪性能以外,光缆中继器给网络系统提供了更加可靠、更加稳定的抗噪能力。至今还未收到过关于噪音引起系统工作不正常的报告。

四。应用特点简介

由于CC—Link可以直接连接各种流量计、电磁阀、温控仪等现场设备,降低了配线成本,并且便于接线设计的更改;通过中继器可以在4.3公里以内保持10Mbps的高速通讯速度,因此广泛用于半导体生产线、自动化传送线、食品加工线以及汽车生产线等各个现场控制领域.在中国国内,也已经有不少地方使用了CC—Link。现将其应用特色归纳如下:

 便于组建价格低廉的简易控制网

第24页 共26页

地铁BAS——抑制谐波方案

作为现场总线网络的CC-Link不仅可以连接各种现场仪表,而且还可以连接各种本地控制站PLC作为智能设备站.在各个本地控制站之间通讯量不大的情况下,采用CC-Link可以构成一个简易的PLC控制网,与真正的控制网相比,价格极为低廉。

 便于组建价格低廉的冗余网络

在一些领域对系统的可靠性提出了很高的要求,这时往往需要设置主站和备用主站构成冗余系统.虽然CC—Link是一个现场级的网络,但是提供了很多高一等级网络所具有的功能,如:可以对其设定主站和备用主站,由于其造价低廉,因此性价比较高。

 适用于一些控制点分散,安装范围狭窄的现场。

在楼宇监控系统中,如燃气监控系统,其相应的检测点很多,而且比较分散。另外,高层建筑为追求设计的经济型,往往尽量缩小夹层和上下通道的尺寸。采用CC—Link现场网连接分立的远程I/O模块,一层网络最多可以控制个地方的2048点,总延长距离可达7。6公里。小型的输入输出模块体积仅为87。3x50x40mm,足以安装在极为狭窄的空间内。

 适用于直接连接各种现场设备。

由于CC—Link是一个现场总线网,因此它可以直接连接各种现场设备。 五。 采用CC-Link连接时需要做硬件以及软件两方面的设置 1。 在硬件方面。

采用屏蔽双绞线按照总线方式连接各控制设备.双绞线的DA/DB为两根信号传输线,DG为接地线,SLD为屏蔽层,连接如图B9-11所示。然后对每个站上的站号开关和传输速度开关(旋钮式或拨动式)做设定。变频器设定为1号站,人机界面设定为2号站。采用5Mbps的通讯速度。注意所有设备的速度必须一致,否则L。ERR(通讯出错)灯会点亮。

图B9-11 硬件连接图

2。 软件方面需要进行如下的设置: I. 对CC—Link组态。可以通过编写初始化程序,或者在参数设定画面进行设定来完成。(后者只有高版本的产品才支持。)

II. 编写相应的通讯程序。 下面先就组态加以说明。 在CC-Link运行以前,需要在主站设定该系统连接了几个子站,每个站都是什么设备等等.然后编写初始化程序;如果采用参数设定画面,则如图B9—12和B9—13所示。

第25页 共26页

地铁BAS——抑制谐波方案

图B9-12

图B9—13

通讯程序主要编写变频器通讯所需的数据交换。

人机界面与CC-Link连接,其通讯方式有两种。一种为循环通讯方式,需要在PLC侧对通讯内容进行简单的编程。另一种为瞬时通讯方式,只需在人机界面侧直接指定所需监控的软元件就可以了,但是所需的通讯时间稍长一些。因此对一些实时要求不高的信息可以采用简单设定的瞬时传输方式。在本系统中人机界面主要采用了瞬时传输,在软元件的设定画面中,在“网络”选项直接指定需要监控的软元件在第几号网络的第几号站,这里指定MMI要监控的是1号网络的0号站即主站。具体设定见下面的图B9-14。

图B9—14 MMI设定

对于上述的PLC内部资源X20/X21…D100/D103/D201等,依照此方法在人机界面上进行相应的设定。

第26页 共26页

因篇幅问题不能全部显示,请点此查看更多更全内容