测品娱乐
您的当前位置:首页Internal Structure of a Gauss-Bonnet Black Hole

Internal Structure of a Gauss-Bonnet Black Hole

来源:测品娱乐
Gravitation&Cosmology,Vol.3(1997),No.1,pp.161–1

c1997RussianGravitationalSociety󰀁

INTERNALSTRUCTUREOFAGAUSS-BONNETBLACKHOLE

S.O.Alexeyev

DepartmentofTheoreticalPhysics,PhysicsFaculty,MoscowStateUniversity,Moscow1199,Russia

arXiv:gr-qc/9704031v1 11 Apr 1997Received31January1997

Blackholesarestudiedintheframesofsuperstringtheoryusinganon-trivialnumericalintegrationmethod.Alowenergystringactioncontaininggraviton,dilaton,Gauss-BonnetandMaxwellcontributionsisconsidered.Four-dimensionalblackholesolutionsarestudiedinsideandoutsidetheeventhorizon.Theinternalpartofthesolutionsisshowntohaveanon-trivialtopology.

1.Introduction

Intherecentyearstherewasaheateddiscussionaboutthenatureofdarkmatter.Amongpossiblecandidatesthereareblackholes.Studyingtheirpropertiesintheframesofsuperstringtheory,onecanhopetoclar-ifysomeaspectsofthedarkmatternature.Thatisoneofthereasonsforagreatinterestininvestiga-tionsofthelowenergystringactioninfourdimen-sions.Someresearches[1,2,3,4,5,6]foundthatthewell-knownsolutions(suchastheSchwarzschildoneorGibbons-Maeda-Garfincle-Horowitz-Strominger(GM-GHS)one)shouldbemodifiedbyhigherordercurvaturecorrections.

Inourpreviouswork[5]theinternalstructureofblackholesolutionsfortheLagrangedensityL=

µ−2φ

SGBwerestudied.Itm2Pl(−R+2∂µφ∂φ)+λe

isofinteresttofindtheinfluenceoftheMaxwelltermonblackholesolutionsof4Dlowenergystringgrav-itywiththesecond-ordercurvaturecorrections.Someresearchers[2,6]considerthebosonicpartofthegravi-tationalactionconsistingofdilaton,graviton,MaxwellandGauss-Bonnet(GB)terms(forsimplicity,thean-tisymmetrictensortermsareignored)takeninthefol-lowingform:

󰀄

S=−gm2Pl(−R+2∂µφ∂φ)

󰀅

(1)−e−2φFµνFµν+λe−2φSGB,

whereRisthescalarcurvature,φisthedilatonfield,

mPlisthePlanckmass;FµνFµνistheMaxwellfieldandλisthestringcouplingparameter.ThelasttermdescribestheGBcontribution(SGB=RijklRijkl−4RijRij+R2)totheaction(1).Suchconfigurationswerepartlystudied[2]bytheperturbativeanalysisO(λ)outsidetheeventhorizon(rh)whenrh≫mPl.Theauthorsshowedthattheblackholesolutionarerealandprovidenon-trivialdilatonichair.Theso-lutionsbeyondtheeventhorizonareveryimportantfromtheviewpointofquantumgravitybecauseitisgenerallybelieved[7]thatintheregionsofspace-timewithsufficientlysmallcurvatureaclassicalsolutiongivesthemaincontributiontotheglobalstructureofthespace-time.Quantumcorrectionsmaydrasticallymodifythepropertiesofspacewhenthecurvatureislargeenough.Astudyofcompleteblackholesolutionsfortheaction(1)istheaimofthiswork.

2.Fieldequations

Theaimistofindstatic,asymptoticallyflat,spheri-callysymmetricblack-hole-likesolutions.Inthiscasethemostconvenientchoiceofthemetricisds=∆dt−

2

2

σ2

22

󰀁

dtdr

󰀄

m2Pl

󰀂

∆′f′f

σ

+σ−

∆f2(φ′)2

f2

+4e−2φλφ′(

∆∆′(f′)2

σ)󰀅

.

(3)

Wewillconsiderablackholewithapurelymag-neticcharge,sothattheMaxwelltensorFµνcanbewrittenintheformF=qsinθdθ∧dϕ.Thecorre-spondingfieldequationsintheGHSgauge[σ(r)=1]are

m2′′Pl(ff+f2(φ′)2

)

+4e−2φλ[φ′′+4e−2−φλφ2(′φ′)2][∆(f′)22∆f′f′′=0−,

1]

m2∆f2(φ′)2+4e−2φλφ′∆′(1−−3∆(∆′f′f−∆(f′Pl(1+)2)f′)2)−e−2φq2f−2=0,

m2′′Pl[∆f

+2∆′f′

+2∆f′′

+2∆f(φ′)2

]

+4e−2φλ[φ′′+4e−2φλφ′2((∆−2(′)φ′)2]2∆∆′f′

2f′+∆∆′′f′+∆∆′f′′)

−2e

−2φq2f

−3

=0,

−2m2′2′′φ′Pl[∆fφ+2∆ff+∆f2φ′′

)

+4e

−2φ

λ((∆′)2

(f′)2

+∆∆′′

(f′)

2

+2∆∆′f′f′′−∆′′]−2e−2φq2f−2=0.

(4)

ItisnecessarytonotethattheGM-GHSsolution

ds2=󰀆1−2M

󰀇−1

dr2

−r󰀆

r

r−

q2exp(2φ0)

Mr

,

(5)

isthebasicsolutionfortheU(1)purelymagneticcase(whenλ=0).IfF=0in(1),thebasicsolutionisthewell-knownSchwarzschildonewithaconstantdilatonfield(accordingtothe“no-hair”theorem).Moreover,thesolutionofEqs.(4)atinfinitymusthavetheGM-GHSform.

3.NumericalResults

Forintegratinginsidetheeventhorizonamethodbasedonintegrationoveranadditionalparameterwasusedasdescribedinourpreviouspaper[5].Themain

S.O.Alexeyev

Y

I

9

9

9

e−2φ(r)

rs

1

9

0.9]

0.80.7rh0.60.5rx

Figure1c

0.40.3

10

r,P.u.v.

100

resultofthatworkisthefollowing.Anasymptoti-callyflatblackholesolutionfortheaction(1)withouttheMaxwelltermexistsfrominfinitydowntotheendpointr=rs(seeFig.1inRef.[5])insidethereg-ulareventhorizon(rh).Whenrhislargeenough(thecontributionofthesecondordercurvaturecor-rectionsissmall)thepositionoftheendpointofthesolutionisrs≪rh.Asrhdecreases(theGBterm

InternalStructureofaGauss-BonnetBlackHoleqcr(rh)12108210

20

30

40

r50607080

90

100

h,P.u.v.

contributionincreases),thedistancebetweenrsandrhbecomessmallerandsmaller.Thecurvaturein-variantalsodivergesnearthepositionr=rs.Anadditional(nonphysical)branchofthesolutionbeginsatthepointrsandexistsuptoapointrxwhichmaybecalledasingularhorizon.Thereisnoothersolutionintheneighborhoodofrs.

WhenoneincludestheMaxwelltermintheaction(1),theresultingpictureisasfollows.Blackholeso-lutionsofEqs.(4)existonlyinthe√rangeofthemag-neticchargevalues0≤q≤m

3

∆(r)0.50-0.5M

-1-1.5rh

-2Figure3a-2.5

10

r,P.u.v.

100

f(r)

10Figure3b

1

rh

10

r,P.u.v.

100

e−2φ(r)0.9

0.80.70.60.50.40.30.2rh

Figure3c0.10

10

r,P.u.v.

100

Figure3:Thedependenceofthemetricfunctions∆(a),

f(b)anddilatonfunctionexp(−2φ)(c)ontheradialco-ordinaterwhentheeventhorizonradiusrhisequalto20.0Planckunitvalues(P.u.v.)andthemagneticchargeisq>qrmcr.

S.O.Alexeyev

[2]S.MignemiandN.R.Stewart,Phys.Rev.D47,5259

(1993);

S.Mignemi,Phys.Rev.D51,934(1995).[3]P.Kanti,N.E.Mavromatos,J.Rizos,K.Tamvakisand

E.Winstanley,Phys.Rev.D54,5049(1996);

P.KantiandK.Tamvakis,“ColouredBlackHolesinHigherCurvatureStringGravity”,hep-th/9609003.[4]E.E.DonetsandD.V.Gal’tsov,Phys.Lett.B352,

261(1995).[5]S.O.AlexeyevandM.V.Pomazanov,Phys.Rev.D55,

2110(1997).[6]T.Torii,H.YajimaandK.Maeda,Phys.Rev.D55,

739(1997).[7]V.P.Frolov,M.A.MarkovandV.F.Mukhanov,Phys.

Lett.B216,272(19).[8]E.EllisandB.G.Schmidt,Gen.Relativ.Grav.8,915

(1977).[9]S.W.HawkingandE.Ellis“Large-ScaleStructureof

theSpace-time”,CambridgeUniversityPress,Cam-bridge,England,1973.

4

因篇幅问题不能全部显示,请点此查看更多更全内容