§4.4 橡胶的疲劳老化与防护 一.疲劳老化的概念
指在多次变形条件下,使橡胶大分子发生断裂或者氧化,结果使橡胶的物性及其他性能变差,最后完全丧失使用价值,这种现象称为疲劳老化。
发生疲劳老化最突出的地方是轮胎的胎侧。随着轮胎每转一圈,经历压缩、伸张不断变形,这种情况下发生疲劳老化。 二.疲劳老化的机理
1.应力引发(机械破坏理论)
当橡胶受到机械力作用时,由于橡胶网络结构的不均匀性,导致产生应力分布不均匀的现象,使局部产生应力集中,结果造成局部的分子链被扯断。这种情况尤其当橡胶处于周期性的变形时更为突出。因为这时橡胶分子链来不及松弛,应变对应力有一滞后角,在分子链中总是保持着一定的应力梯度,从而使分子链容易发生断裂,当分子链被扯断后,生成游离基,引发产生氧化链反应。
橡胶的低温塑炼也属这种情况,在机械力的作用下,分子链断裂(在低温条件下,又可引发氧化作用)。
2.应力活化(力化学理论)
当橡胶分子链处于应力作用时,由于机械力作用于分子链中原子的价力使其减弱,结果使橡胶氧化反应活化能降低,活化了氧化过程。
未受应力时,橡胶大分子活化能为21.0千卡/克分子。
受应力时,振幅为50%,频率为250周/秒,氧化活化能为18.1千克/克分子。
在多次变形条件下,即可发生应力引发,又可发生应力活化,但二者发生的情况不同:一般,温度高、振幅小、频率低、氧的浓度大的条件下,以应力活化为主,反之以应力引发为主。
三.影响疲劳老化的因素
1.频率与振幅越高,越易疲劳老化。
频率越高,应力松弛能力下降,易产生应力集中,导致应力引发,易疲劳老化。 振幅增加,易应力活化,容易疲劳老化。 实验事实根据如下:
变形振幅(%) 0 25 50 75
应力活化活化能(千卡/克分子) 21.0 20.1 18.1 13.6 从以上数据可以看出,振幅增加,应力活化活化能下降,越易疲劳老化。
2.温度
温度的影响可分为两个方面:
a.温度越高,分子的活动性越强,应力松弛速度越快(应力集中情况下降),不易产生应力集中,引起断链机会下降,不易发生疲劳老化。
B.温度升高,疲劳生热的散出就困难,使温度进一步升高,越易产生热机械破坏,热氧化提高,疲劳老化加快。
温度从两个方面影响疲劳老化,温度低以a为主,温度高以b为主。总的看来,温度升高,加剧疲劳老化。 3.空间介质
氧气:易导致疲劳老化 惰性气体和氮气:疲劳老化缓慢 4.填料及补强剂的活性
活性越大对橡胶分子吸附作用越强,在粒子表面形成一层致密结构,使体系中大分子运动性下降,应力松弛能力下降,易产生应力集中,容易导致疲劳老化。
所以应根据制品使用情况选用填料,若在多次变形条件下使用,则选用活性低的填料、补强剂。
5.橡胶的结晶性
结晶性橡胶:耐拉伸变形的疲劳老化,如NR 非结晶性橡胶:耐压缩变形的疲劳老化,如SBR 6.交联键的结构
硫交联键中,硫原子数越少,交联键的刚性越大,则交联结构的活动性越小,橡胶分子链段受到的束缚力越大,结果耐疲劳老化越差。
在多硫交联键为主的硫化橡胶的疲劳过程中,网络结构中交联键密度有增大的趋势,这是由于多硫交联键中出的硫原子又参与了硫化作用,生成了新的交联键,低硫交联键为主的硫化橡胶几乎没有这种现象。 耐疲劳老化性比较:CV>SEV>EV
轮胎是在动态条件下使用,所以基本上使用CV 四.疲劳老化的防护
最有效的方法是加入化学防老剂,防护效果最好的是对苯二胺类,原因还不清楚。英国学者认为:该类防老剂是通过终止,切断自由基链,同时防老剂不断再生。
防护疲劳老化防老剂的主要作用是提高橡胶疲劳过程结构变化的稳定性,特别是在高温条件下,防老剂有力地阻碍了机械活化氧化反应的进行。
另外应从橡胶填料的活性,橡胶的结晶性,制品使用条件来考虑防护疲劳老化。 §4.5 橡胶的臭氧老化及防护
橡胶在大气中老化变质,臭氧的作用也是一个很重要的原因,臭氧老化先是在表面层,特别容易在应力集中处或配合粒子与橡胶的界面处产生,通常先生成薄膜,然后薄膜龟裂,
特别是在动态条件下使用时,薄膜更易不断破裂而露出新鲜表面,使得臭氧老化不断向纵深发展,直到完全破坏。
不饱和橡胶最不耐臭氧,因为臭氧最易与主链上的双键迅速反应,一般认为是亲电子加成反应。同时,由于对橡胶分子的扩散是反应中的最 阶段,所以反应也取决于外部和内在的物理因素。 一.臭氧老化的特征
1.橡胶的臭氧老化是一个表面反应。
2.橡胶发生臭氧龟裂需要一定的应力或应变,未受拉伸的橡胶臭氧老化后表面形成类似喷霜状的灰白色的硬脆膜。在应力或应变作用下,薄膜发生臭氧龟裂。 3.臭氧龟裂的裂纹方向垂直于受力方向。 二.影响橡胶臭氧老化的因素 1.橡胶种类的影响:
(1)双键含量:双键的含量越高,耐臭氧老化性越差;
(2)双键碳原子上取代基的特性:吸电子取代基降低了双键的反应活性,降低了臭氧反应能力;供电子取代基增加了电子云密度,提高了双键的反应活性,提高了臭氧反应能力。如:CR、BR、NR三种胶的耐臭氧老化性为CR>BR>NR。 2.臭氧浓度的影响
臭氧的浓度越高,耐臭氧老化性越差;
同一臭氧浓度下,橡胶结构不同,臭氧老化特性不同。如NR短时间产生龟裂,但龟裂增长速度慢;SBR、BR、NBR产生龟裂所需时间长,但龟裂增长速度快。 3.应力应变的影响:
臭氧进攻橡胶的表面,在表面老化,表面形成臭氧化膜,臭氧化膜比较硬、脆,可以阻止臭氧向内部渗透,但在动态条件下,老化膜易破裂,臭氧不断地与橡胶反应,最终使橡胶断裂。
低伸长产生的裂纹数量少,龟裂增长速率快,裂纹深;高伸长产生的裂纹数量多,龟裂增长速率慢,裂纹浅。 4.温度的影响
温度升高,臭氧老化速度加快。 三.臭氧老化的防护 1.物理防:
第三种情况最常用。防止橡胶臭氧老化的蜡分为石蜡和微晶蜡。
石蜡:由直链烷烃组成,分子量较低,结晶度较高,形成大的结晶,熔点范围为38~74℃。 微晶蜡:高分子量石油的残余物,主要由支化烷烃或异构链烷烃组成,形成小而不规整的结晶,熔点57~100℃。
蜡类是比较脆的物质,在动态情况下,蜡膜容易产生动态破裂,所以在动态情况下应使用蜡类与抗臭氧剂并用等办法。
2.化学防
在橡胶中加入化学抗臭氧剂,在动静态下都可使用化学防老剂。抗臭氧剂用量一般为1.5~3.0份,几乎都是含氮化合物。常用的是对苯二胺类。 §4.6橡胶常用防老剂及选用原则 一.橡胶用防老剂
目前防老剂种类繁多,而且每种防老剂同时有几种房老化作用。 按化学结构可分为:胺类、酚类、杂环类及其它类。
按防护效果可分为:抗氧、抗臭氧、抗疲劳、抗有害金属和抗紫外线等防老剂。 下面按防老剂化学结构分类加以介绍: 1.胺类防老剂:
防护效果最突出,品种最多。
主要防护作用:热氧老化、臭氧老化、对热重金属及紫外线的催化氧化以及疲劳老化都有显著的防护效果。
这类防老剂的防护效果是酚类防老剂不可比拟的,远优于酚类防老剂。 缺点:有污染性,不宜用于白色或浅色橡胶制品。
这类防老剂又可细分为:酮胺类、醛胺类、二芳仲胺类、二苯胺类、对苯二胺类以及烷基芳基仲胺类六个类型。 ①酮胺类
a.防老剂AW(丙酮与对胺基苯乙醚的反应产物,6-乙氧基-2,2,4-三甲基-1,2-二氢化喹啉))
b.防老剂BLE(丙酮与二苯胺的高温缩合物)
c.防老剂RD(2,2,4-三甲基-1,2-二氢化喹啉聚合物) ②醛胺类
a.防老剂AH(乙醛-α萘胺缩合物)
b.防老剂AP(3-羟基丁醛-α-萘胺)
③二芳仲胺类
a.防老剂A(N-苯基-α-萘胺)
b.防老剂D(N-苯基-β-萘胺) ④二苯胺类
品种少,性能不太突出,较少应用。二苯胺本身是一种良好的防老剂,但很容易挥发,通
常是采用它的衍生物作防老剂,主要品种有4,4-二甲氧基二苯胺,具有突出的耐疲劳老化的性能。 ⑤对苯二胺类
这是目前最新而且是最重要的一类防老剂,这类防老剂对各种类型的老化均有较优秀的防护效能,主要防止臭氧、疲劳及热氧老化,尤其在防止臭氧、疲劳老化是其它防老剂无法相比的。主要品种有: a.防老剂4010(CPPD)
对热、氧、高能辐射和铜害有显著的防护作用,对抗臭氧和屈挠疲劳老化有卓越的效能,比防老剂A和D的效果均好,在胶料中易分散,但用量超过1份时会产生喷霜,有污染性,不宜作浅色制品。
这类防老剂是NR及合成橡胶优良的防老剂,尤其适用NR和SBR。用于制造航空轮胎、汽车轮胎、力车胎、电缆及其它工业橡胶制品。 b.防老剂4010NA(IPPD)
对臭氧和屈挠疲劳老化有卓越的防护效能,对热氧老化、光氧老化具有良好的防护作用,同时还有钝化重金属离子的作用,其防护效能比4010更全面,应用范围更广。 在NR、SBR、BR、CR、ZR及胶乳中均适用。常用于制造承受动态和静态应力较高的制品。如制造航空汽车轮胎,电缆,胶管,胶带,胶辊等。有污染性。 c.防老剂H(DPPD)
防老剂H为银白色片状结晶,在空气中和日光下易氧化变色。对臭氧和屈挠疲劳老化有较好的防护效能,对热氧老化和有害金属催化老化也有良好的防护作用,并有抗龟裂作用。适用于NR、SBR、BR、NBR和IR及Latex中。用于制造轮胎及各种工业橡胶制品。有污染性,一般用量为0.2-0.3phr,不单独使用。 ⑥烷基芳基仲胺类
这类防老剂的污染性较小,可用于浅色制品,但防护效果较差。主要品种有: a.防老剂DPD
b.防老剂CMA
2.酚类防老剂
优点:无污染性,不变色,适用于浅色或彩色橡胶制品。 缺点:防护效果差。
这类防老剂可分为:取代一元酚类,多元酚类,硫化二取代酚类以及烷撑二取代酚类等。 ①一元酚类
防老剂2
②烷撑双取代酚类
③硫代双取代酚类 ④多元酚类
防老剂效能与二元酚类大体相似。其中最常用的品种为防老剂DOD。
注:这类物质仅在未硫化橡胶中具有防护活性,而在硫磺硫化的橡胶中没有防护效能,主要用于保持未硫化橡胶薄膜及粘合剂的粘性。 对热氧老化有效,也能抑制金属离子的作用。 3.杂环及其它类防老剂
杂环类防老剂中主要品种是苯并咪唑型和二硫代氨基甲酸盐类,最重要的是防老剂MB及其锌盐MBZ。
主要用于防止热氧老化,也能有效的防止铜害。
不具有污染性,常用于浅色、彩色及透明的橡胶制品,泡沫胶乳制品等。其锌盐MBZ也是一种防老剂,与MB有相似的防护效果。 4.非迁移性防老剂
苛刻条件会使橡胶中防老剂很易挥发和抽出,使之迅速消耗掉,影响了防护作用。因而研究不挥发、不抽出、不污染、无毒的防老剂是十分必要的,所以出现了一系列非迁移性防老剂。
非迁移性防老剂是指在橡胶中能够持久地发挥防护效能的防老剂。非迁移性防老剂的特点:难抽出、难迁移、难挥发。非迁移性防老剂可分为反应性防老剂和高分子量防老剂。 所谓反应性防老剂,是防老剂分子以化学键的形式结合在橡胶的网构之中,使防老剂分子不能自由迁移,也就不发生挥发或抽出现象,因而提高了防护作用的持久性。 ①反应性防老剂
a.在加工过程中防老剂与R化学键合
这类防老剂是在热硫化过程中与橡胶发生化学反应,结合于硫化胶的网构之中。在硫化作用下,某些基团(如亚硝基、烯丙基以及马来酰亚胺基等)能够与链烯烃橡胶发生化学反应。若将这些基团事先接在防老剂分子结构上,则通过这些基团就可把防老剂分子结合于橡胶网构之中。
b.在加工前将防老剂接枝到橡胶上。
这类防老剂由胺类或酚类防老剂与液体橡胶反应,使防老剂分子接枝在大分子上;也可将胺类防老剂与含有活泼基团的高聚物(如环氧聚合物或亚磷酸酯化的烯烃聚合物)反应制
得。
如:胺类防老剂与环氧二烯烃聚合物化学接枝
反应时先将不饱和聚合物环氧化,再用胺类防老剂进行化学接枝。
这种高分子防老剂称为BAO-1,它的化学结构类似于防老剂4010NA。与一般防老剂比较,这种高分子防老剂在BR或SBR中有突出的防护效果,原因是在高分子防老剂结构中含有羟基,它直接处于活性芳香仲胺基团附近,产生了抗氧的协同效应,再是在橡胶结构中的高分子防老剂使两种聚合物的自由基有机会进行再结合。 c.具有防护功能的单体与橡胶单体共聚。 ②高分子量防老剂 二.防老剂的使用原则
为使橡胶制品具有一定的防护效能,一般都需要在胶料中加入防老剂。目前防老剂的品种繁多,效果各异。防老剂的防护效能与防老剂本身的性能、聚合物的类型、加工条件、制品的使用条件等有关。因此,应根据具体的情况来选用防老剂。通常在选用防老剂时应考虑以下几点:
1.了解橡胶制品的使用条件及引起老化的因素,这是在选择防老剂时首先考虑的。 2.考虑加工过程中工艺条件的影响 3.考虑所采用的橡胶及配合剂的性质 ①橡胶的性质 ②配合剂的性质
4.防老剂本身性质的选择 ①变色及污染性 ②挥发性 ③溶解性
④稳定性
第五章 橡胶的增塑体系 §5.1 橡胶增塑剂及分类 一.橡胶增塑剂的概念
增塑剂又称为软化剂,是指能够降低橡胶分子链间的作用力,改善加工工艺性能,并能提高胶料的物理机械性能,降低成本的一类低分子量化合物。 过去习惯上根据应用范围不同分为软化剂和增塑剂。软化剂多来源于天然物质,常用于非极性橡胶;增塑剂多为合成产品,多用于极性合成橡胶和塑料中。目前由于所起的作用相同,统称为增塑剂。 二.增塑剂的作用
1.改善橡胶的加工工艺性能:通过降低分子间作用力,使粉末状配合剂更好地与生胶浸润并分散均匀,改善混炼工艺;通过增加胶料的可塑性、流动性、粘着性改善压延、压出、成型工艺。
2.改善橡胶的某些物理机械性能:降低制品的硬度、定伸应力、提高硫化胶的弹性、耐寒性、降低生热等。
3.降低成本:价格低、耗能省。 三.增塑剂的分类 1.根据作用机理分: 物理增塑剂:增塑分子进入橡胶分子内,增大分子间距、减弱分子间作用力,分子链易滑动。 化学增塑剂:又称塑解剂,通过力化学作用,使橡胶大分子断链,增加可塑性。 大部分为芳香族硫酚的衍生物如2-萘硫酚、二甲苯基硫酚、五氯硫酚等。 2.按来源分:
① 石油系增塑剂 ② 煤焦油系增塑剂 ③ 松油系增塑剂 ④ 脂肪油系增塑剂 ⑤ 合成增塑剂 四.对增塑剂的要求
增塑效果好,用量少,吸收速度快;
与橡胶的相容性好,挥发性小、不迁移、耐寒性好,耐水、耐油、溶剂; 电绝缘性好,耐燃性好,无色、无毒、无臭,价廉易得。 §5.2 橡胶增塑原理及增塑效果表征 一.橡胶增塑的方法
提高橡胶可塑性的方法主要有以下三种: 1. 物理增塑法:加入物理增塑剂 2. 化学增塑法:化学塑解剂
3. 机械增塑法:通过机械剪切作用,提高可塑性。 可单独应用,与前两种方法一起使用时,效果更好。 二.增塑剂与橡胶的相容性 1.增塑剂与橡胶的相容性
相容性是指两种不同的物质混合时形成均相体系的能力。相容性好,两种物质形成均相体系的能力强。橡胶与增塑剂的相容性很重要,若相容性差,增塑剂则会从橡胶中喷出,甚至难于混合、加工。橡胶与增塑剂的相容性的预测方法是采用溶解度参数(δ)。在不考虑氢键和极化的影响下,一般橡胶与增塑剂的溶解度参数相近,相容性好,增塑效果好。 橡胶的增塑可以看成是低分子增塑剂溶解于橡胶中的一种过程,可利用聚合物—溶剂体系的相应规律来分析橡胶与增塑剂的相互作用。
吉布斯自由能 ΔG=ΔH-TΔS 若ΔG<0,溶解能自发进行,相容性好 溶解焓变:ΔH=υ1υ2(δ1-δ2)2 υ1、υ2—橡胶、增塑剂的体积分数 δ1、δ2—橡胶、增塑剂的溶解度参数
因为溶解过程ΔS>0,所以要使ΔG<0,ΔH应尽可能小,因此δ1、δ2要接近。 2.增塑剂与橡胶相容性的实验预测 研究发现,在不饱和橡胶中使用增塑剂时,增塑剂的不饱和性高低对增塑剂和不饱和橡胶的相容性有很大影响。增塑剂的不饱和性越高,增塑剂与不饱和橡胶的相容性越好。测定增塑剂不饱和性的方法是测其苯胺点。
苯胺点:同体积的苯胺与增塑剂混合时,混合液呈均匀透明时的温度。 苯胺点越高,说明增塑剂与苯胺的相容性越差,不饱和性低。 三.增塑剂作用机理
1.非极性增塑剂作用机理
非极性增塑剂增塑非极性橡胶时,由于分子量小,无规渗透于大分子之间,增大了分子间的距离,削弱了大分子间作用力,使大分子间滑移容易,流动性提高。
增塑剂的加入会降低橡胶的玻璃化温度Tg,Tg下降值与增塑剂的体积分数有直接关系: ΔTg=kφ1 k-常数;φ1—增塑剂的体积分数 2.极性增塑剂的作用机理 极性增塑剂增塑极性橡胶时,极性的增塑剂低分子的极性部分定向地排列于橡胶大分子的极性部位,对大分子链段起包围阻隔作用,从而增加了大分子链段之间的距离,减小了大分子间相互作用力,增大了大分子链段的运动性,从而提高了橡胶的塑性。 ΔTg=kn k—与增塑剂性质有关的常数;n—增塑剂的摩尔数。 四.增塑剂增塑效果的表征
增塑剂对橡胶的塑化作用通常用橡胶的门尼粘度的降低值来衡量,表征方法主要有两种: 1.填充指数(EI) 在一定的温度下,把高门尼粘度的橡胶塑化为某一标准门尼粘度值时所需要的增塑剂的份数。填充指数越小,对橡胶的塑化作用越强。 2.软化力(S.P.)
在一定的温度下,以一定量的增塑剂填充橡胶时,其门尼粘度的下降率称为软化力。软化力高,对橡胶的塑化作用强。
§5.3 橡胶增塑剂 一.石油系增塑剂
是橡胶加工中使用最多的增塑剂之一。增塑效果好,来源丰富,成本低廉。石油系增塑剂是选择适当的原油进行常压和减压蒸馏制得。主要品种有操作油、三线油、变压器油、机油、轻化重油、石蜡、凡士林、沥青及石油树脂等,其中最常用的是操作油。 1.操作油的分类
操作油是石油的高沸点馏分,由分子量在300~600的复杂烃类化合物组成,分子量分布宽。根据油中主要成分的不同,可将操作油分为以下三种:
①芳烃油: 以芳烃油为主。褐色的粘稠状液体,与橡胶的相容性最好,加工性能好,吸收速度快。适用于天然橡胶和多种合成橡胶;缺点是有污染性,宜用于深色橡胶制品中。 ②环烷油: 以环烷烃为主。浅黄色或透明液体,与橡胶的相容性较芳烃油差,但污染性比芳烃油小,适用于NR和多种合成橡胶。
③石蜡油: 又称为链烷烃油,以直链或支化链烷烃为主。无色透明液体,粘度低,与橡胶的相容性差,加工性能差,吸收速度慢,多用于饱和性橡胶中,污染性小或无污染,宜用于浅色橡胶制品中。 2. 操作油的特性
(1)操作油粘度 操作油粘度越高,则油液越粘稠,操作油对胶料的加工性能及硫化胶的物性都有影响。采用粘度低的操作油,润滑作用好,耐寒性提高,但在加工时挥发损失大。当闪点低于180℃时,挥发损失更大,应特别注意。 操作油的粘度与温度有很大关系。在低温下粘度更高,所以油的性质对硫化胶的低温性能有很大的影响,采用低温下粘度(在-18℃的运动粘度)变化较小的油,能使硫化胶的低温性能得到改善。高芳烃油的粘度对温度的依赖性比烷烃油大。 操作油的粘度与硫化胶的生热有关,使用高粘度油的橡胶制品生热就高。在相同粘度的情况下,芳香类油的生热低。拉伸强度和伸长率随油粘度的提高而有所增大,曲挠性变好,但定伸应力变小。相同粘度的油,如以等体积加入,则芳香类油比饱和的油能得到更高的伸长率。
(2)相对密度 在石油工业中通常是测定60℃下的相对密度。当橡胶制品按重量出售时橡胶加工油的相对密度就十分重要。通常情况下,芳烃油相对密度大于烷烃油和环烷烃油的相对密度。橡胶加工油常常是按体积出售,而在橡胶加工中则按重量进行配料。
(3)苯胺点 在试管内线加入5~10ml苯胺后,再加入同体积的试料,然后从下部加热,直至出现均匀的透明溶液,此时的温度谓之该油的苯胺点。芳香烃类增塑剂的分子结构与苯胺最接近,易溶于其中,故苯胺点最低。苯胺点低的油类与二烯类橡胶有较好的相溶性,大量加入而无喷霜现象。相反,苯胺点高的油类,需要在高温时才能与生胶互溶,所以在温度降低时就易喷出表面。操作油苯胺点的高低,实质上是油液中芳香烃含量的标志。一般说来,操作油苯胺点在35~115℃范围内比较合适。
(4)倾点(流动点) 倾点是能够保持流动和能倾倒的最低温度。此特性可以表示对制品操作工艺温度的适用性。 (5)闪点 是指释放出足够蒸汽与空气形成的一种混合物在标准测试条件下,能够点燃的温度。操作油的闪点与橡胶硫化、储存及预防火灾有直接的关系,同时也可衡量操作油的挥发性。
(6)中和值 中和值是操作油酸性的尺度,酸性大能引起橡胶硫化速度的明显延迟。中和值可以中和1克操作油的酸含量所需要的KOH的毫克数来表示。 此外,油液的折射率、外观颜色、挥发分也都能反映其组成情况。 3.操作油对橡胶加工性能的影响 (1)对混炼的影响
橡胶对油的吸收速度与油的组成、粘度、混炼条件有关:一般粘度低、芳香烃含量高、温度高,吸收得快。但油用量多,使炭黑在橡胶中的分散性变差,必须分批加。此外,混炼时加入油,可减小生热、降低能耗。 (2)对压出的影响
胶料中加入适量的油,可使胶料软化,压出半成品表面光滑、压出膨胀小,压出速度快。 (3)对硫化的影响
随着胶料中油类填充量的增加,硫化速度有减缓的倾向。油的加入,使硫化剂、促进剂在橡胶中的浓度降低,使硫化速度减缓。
含芳烃油多的操作油,有促进胶料焦烧和加速硫化的作用。 4.操作油在几种橡胶中的使用特性
(1)SBR:芳烃油最好,使拉伸强度、伸长率提高,定伸应力下降,硫化胶的耐屈挠性好。 (2)BR:由于炭黑填充量大,操作油的用量多些,对性能的影响不显著。 (3)CR:选用芳香烃最好,其次是环烷油,不能用石蜡油。 (4)NBR:一般不用操作油,多用合成增塑剂。
(5)IIR:使用低粘度的油,用环烷油或石蜡油,不用芳烃油。 (6)EPDM:一般不使用芳烃油,多用石蜡油和环烷油。 二.煤焦油增塑剂
主要品种有:煤焦油、古马隆、煤沥青和RX-80树脂。与橡胶的相容性好,并能提高橡胶的耐老化性。其中最常使用的是古马隆树脂,它既是增塑剂,又增粘剂,特别适合于合成橡胶。 1.煤焦油
黑色粘稠状液体,有臭味、污染性,易混入胶料,能溶解硫黄,防止喷霜,能提高制品的耐老化性,增加SBR的粘着性。 2.古马隆树脂
根据聚合度的不同,古马隆树脂分为液体古马隆树脂和固体古马隆树脂。
液体古马隆:有增塑、增粘作用,比固体古马隆好,但补强性低,使用不方便。
固体古马隆:与橡胶的相容性较好,有增塑、增粘和补强作用,有助于炭黑的分散,能溶解硫黄和硬脂酸,防止喷霜,能提高胶料的粘着性及硫化胶的拉伸强度和硬度,用量低于15份。
根据古马隆软化点的范围不同其应用也有所不同,一般,软化点为5~30℃的是粘稠状液体,属于液体古马隆,在除丁苯橡胶以外的合成橡胶和天然橡胶中作增塑剂、粘着剂及再生橡胶的再生剂;软化点在35~75℃的粘性块状古马隆,可用作增塑剂、粘着剂或辅助补强剂;软化点在75~135℃的脆性固体古马隆树脂,可用作增塑剂和补强剂。 3.RX-80树脂
反应活性很高,可起增塑、增粘和补强作用,还可增加彩色胶的光泽。 三.松焦油系增塑剂
松焦油是干馏松根、松干除去松节油后的残留物质。主要品种有松焦油、松香、松香油、妥尔油等。最常用的是松焦油,能提高胶料的粘着性、耐寒性,有助于配合剂分散,延缓硫化,动态生热大。
松香多用于胶浆和与布面结合的胶料中。 四.脂肪油系增塑剂
脂肪油系增塑剂是由植物油及动物油制取的脂肪酸、油膏和其它。 硬脂酸:能促进ZnO、炭黑在橡胶中的分散,还是重要的硫化活性剂。 油膏:有黑油膏、白油膏。使炭黑易分散,对压延、压出有利,半成品表面光滑、收缩率小、挺性大,可防止喷霜。硫化后易脱模,但用量多时会延缓硫化。 其它包括甘油、蓖麻油、大豆油、硬脂酸锌等。 五.合成增塑剂
合成增塑剂主要用于极性较强的橡胶或塑料中,如NBR、CR。合成增塑剂能赋予胶料柔软性、弹性和加工性能。还可提高制品的耐寒性、耐油性、耐燃性等。合成增塑剂按结构分有以下几种:
邻苯二甲酸酯类、脂肪二元酸酯类、脂肪酸类、磷酸酯类、聚酯类、环氧类、含氯类和其它,分别简单介绍如下: 1.邻苯二甲酸酯类
结构式如下:R为烷基、芳基、环己基等。
邻苯二甲酸二丁酯(DBP):能改善胶料的耐屈挠性、粘着性及耐低温性,但耐久性差。 邻苯二甲酸二辛酯(DOP):具有较好的综合性能,与橡胶相容性好,耐寒、耐热、电绝缘性好。
一般R基团小,与橡胶的相容性好,但挥发性大,耐久性差;R基团大,其耐挥发性、耐久性、耐热性提高,但增塑、耐寒性变差。 2.脂肪二元酸酯类 结构式如下:
主要作为耐寒性增塑剂,主要品种有: 已二酸二辛酯(DOA):具有优异的耐寒性,但耐油性不够好,挥发性大。 壬二酸二辛酯(DOZ):具有优良的耐寒性,挥发性低,耐热、耐光、电绝缘性好。 癸二酸二辛酯(DOS):优良的耐寒性、低挥发性及优异的电绝缘性,但耐油性差。 癸二酸二丁酯(DBS):耐寒性好,但挥发性大,易迁移,易抽出。 3.脂肪酸酯类
耐寒性极好,主要品种有油酸酯、季戊四醇脂肪酸酯、柠檬酸酯类。
常用品种有油酸丁酯(BO),具有优越的耐寒性、耐水性,但耐侯性、耐油性差。 4.磷酸酯类
结构式中R1、R2、R3代表烷基、氯代烷基、芳基。
主要用作耐燃性增塑剂,用量越大,耐燃性越好,分子中烷基成分越少,耐燃性越好。 常用品种有:磷酸三甲苯酯(TCP):良好的耐燃、耐热、耐油性及电绝缘性,耐寒性差。 磷酸三辛酯(TOP):耐寒性好,挥发性小,但易迁移,耐油性差。 5.聚酯类
分子量在1000~8000的聚酯,主要作耐油增塑剂,挥发性小,迁移性小,耐油、耐水、耐热。
主要品种有:癸二酸系列、己二酸系列、邻苯二甲酸系列等。其中癸二酸系列增塑效果好,邻苯二甲酸系列的增塑效果差。
这些酯类合成增塑剂具有较高的极性,多用于极性橡胶。随着用量的增大,橡胶的物理机械性能下降,但伸长率和回弹性有所提高。采用直链的脂肪酸酯类可提高硫化胶的耐寒性,但易抽出。
NBR中常用DOP、DBP、TCP等,作耐寒制品时可用DOA、DOZ、DBS等,耐油时可选用聚酯类增塑剂。
CR通常使用5~10份石油系增塑剂,但作耐寒制品时,应选用酯类增塑剂,作耐油制品时可选用聚酯类增塑剂。
SBR:改善加工性能时,使用石油系增塑剂;提高耐寒性时,可使用脂肪酸类及脂肪二元酸酯类增塑剂。
IIR:提高耐寒性时,可选用DOA、DOS增塑剂,提高耐油性时,选用聚酯类增塑剂。 6.环氧类
此类增塑剂主要包括环氧化油、环氧化脂肪酸单酯和环氧化四氢邻苯二甲酸酯等。环氧增塑剂在它们的分子中都含有环氧结构,具有良好的耐热、耐光性能。 环氧化油类,如环氧化大豆油、环氧化亚麻子油等,环氧值较高,一般为6%~7%,其耐热、耐光、耐油和耐挥发性能好,但耐寒性和增塑效果较差。
环氧化脂肪酸单酯的环氧值大多为3%~5%,一般耐寒性良好,且塑化效果较DOA好,多用于需要耐寒和耐侯的制品中。常用的环氧化脂肪酸单酯有环氧油酸丁酯、辛酯、四氢糠醇酯等。
环氧化四氢邻苯二甲酸酯的环氧值较低,一般仅为3%~4%,但它们却同时具有环氧结构和邻苯二甲酸酯结构,因而改进了环氧油相溶性不好的缺点,具有和DOP一样的比较全面的性能,热稳定性比DOP还好。 7.含氯类
含氯类增塑剂也是耐燃性增塑剂。此类增塑剂主要包括氯化石蜡、氯化脂肪酸酯和氯化联苯。 氯化石蜡的含氯量在35%~70%左右,一般含氯量为40%~50%。氯化石蜡除耐燃性外,还有良好的电绝缘性,并能增加制品的光泽。随氯含量的增加,其耐燃性、互溶性和耐迁移性增大。氯化石蜡的主要缺点是耐寒性、耐热稳定性和耐侯性较差。
氯化脂肪酸酯类增塑剂多为单酯增塑剂,因此,其互溶性和耐寒性比氯化石蜡好。随氯含量的增加耐燃性增大,但会造成定伸应力升高和耐寒性下降。
氯化联苯除耐燃性外,对金属无腐蚀作用,遇水不分解,挥发性小,混合性和电绝缘性好,并有耐菌性。
因篇幅问题不能全部显示,请点此查看更多更全内容